Documentation

Mathlib.Algebra.Small.Group

Transfer group structures from α to Shrink α. #

noncomputable instance instOneShrink {α : Type u_1} [One α] [Small.{u_2, u_1} α] :
Equations
noncomputable instance instZeroShrink {α : Type u_1} [Zero α] [Small.{u_2, u_1} α] :
Equations
@[simp]
theorem equivShrink_symm_one {α : Type u_1} [One α] [Small.{u_2, u_1} α] :
@[simp]
theorem equivShrink_symm_zero {α : Type u_1} [Zero α] [Small.{u_2, u_1} α] :
noncomputable instance instMulShrink {α : Type u_1} [Mul α] [Small.{u_2, u_1} α] :
Equations
noncomputable instance instAddShrink {α : Type u_1} [Add α] [Small.{u_2, u_1} α] :
Equations
@[simp]
@[simp]
@[simp]
theorem equivShrink_mul {α : Type u_1} [Mul α] [Small.{u_2, u_1} α] (x y : α) :
@[simp]
theorem equivShrink_add {α : Type u_1} [Add α] [Small.{u_2, u_1} α] (x y : α) :
@[simp]
theorem equivShrink_symm_smul {α : Type u_1} {R : Type u_2} [SMul R α] [Small.{u_3, u_1} α] (r : R) (x : Shrink.{u_3, u_1} α) :
@[simp]
theorem equivShrink_smul {α : Type u_1} {R : Type u_2} [SMul R α] [Small.{u_3, u_1} α] (r : R) (x : α) :
noncomputable instance instDivShrink {α : Type u_1} [Div α] [Small.{u_2, u_1} α] :
Equations
noncomputable instance instSubShrink {α : Type u_1} [Sub α] [Small.{u_2, u_1} α] :
Equations
@[simp]
@[simp]
@[simp]
theorem equivShrink_div {α : Type u_1} [Div α] [Small.{u_2, u_1} α] (x y : α) :
@[simp]
theorem equivShrink_sub {α : Type u_1} [Sub α] [Small.{u_2, u_1} α] (x y : α) :
noncomputable instance instInvShrink {α : Type u_1} [Inv α] [Small.{u_2, u_1} α] :
Equations
noncomputable instance instNegShrink {α : Type u_1} [Neg α] [Small.{u_2, u_1} α] :
Equations
@[simp]
@[simp]
theorem equivShrink_inv {α : Type u_1} [Inv α] [Small.{u_2, u_1} α] (x : α) :
@[simp]
theorem equivShrink_neg {α : Type u_1} [Neg α] [Small.{u_2, u_1} α] (x : α) :
noncomputable instance instMonoidShrink {α : Type u_1} [Monoid α] [Small.{u_2, u_1} α] :
Equations
noncomputable instance instGroupShrink {α : Type u_1} [Group α] [Small.{u_2, u_1} α] :
Equations