Documentation
Mathlib
.
AlgebraicGeometry
.
Morphisms
.
IsIso
Search
return to top
source
Imports
Init
Mathlib.Topology.IsLocalHomeomorph
Mathlib.AlgebraicGeometry.Morphisms.OpenImmersion
Imported by
AlgebraicGeometry
.
isomorphisms_eq_isOpenImmersion_inf_surjective
AlgebraicGeometry
.
isomorphisms_eq_stalkwise
AlgebraicGeometry
.
instIsLocalAtTargetIsomorphismsScheme
AlgebraicGeometry
.
instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop
AlgebraicGeometry
.
instIsLocalAtTargetMonomorphismsScheme
Being an isomorphism is local at the target
#
source
theorem
AlgebraicGeometry
.
isomorphisms_eq_isOpenImmersion_inf_surjective
:
CategoryTheory.MorphismProperty.isomorphisms
Scheme
=
@
IsOpenImmersion
⊓
@
Surjective
source
theorem
AlgebraicGeometry
.
isomorphisms_eq_stalkwise
:
CategoryTheory.MorphismProperty.isomorphisms
Scheme
=
(
CategoryTheory.MorphismProperty.isomorphisms
TopCat
)
.
inverseImage
Scheme.forgetToTop
⊓
stalkwise
fun {
R
S
:
Type
u_1} [
CommRing
R
] [
CommRing
S
] (
f
:
R
→+*
S
) =>
Function.Bijective
⇑
f
source
instance
AlgebraicGeometry
.
instIsLocalAtTargetIsomorphismsScheme
:
IsLocalAtTarget
(
CategoryTheory.MorphismProperty.isomorphisms
Scheme
)
source
instance
AlgebraicGeometry
.
instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop
:
HasAffineProperty
(
CategoryTheory.MorphismProperty.isomorphisms
Scheme
)
fun (
X
x
:
Scheme
) (
f
:
X
⟶
x
) (
x_1
:
IsAffine
x
) =>
IsAffine
X
∧
CategoryTheory.IsIso
(
Scheme.Hom.appTop
f
)
source
instance
AlgebraicGeometry
.
instIsLocalAtTargetMonomorphismsScheme
:
IsLocalAtTarget
(
CategoryTheory.MorphismProperty.monomorphisms
Scheme
)