Topological simplices #
We define the natural functor from SimplexCategory
to TopCat
sending [n]
to the
topological n
-simplex.
This is used to define TopCat.toSSet
in AlgebraicTopology.SingularSet
.
instance
SimplexCategory.instFintypeObjForget
(x : SimplexCategory)
:
Fintype (CategoryTheory.ConcreteCategory.forget.obj x)
Equations
- x.instFintypeObjForget = inferInstanceAs (Fintype (Fin (x.len + 1)))
def
SimplexCategory.toTopObj
(x : SimplexCategory)
:
Set ((CategoryTheory.forget SimplexCategory).obj x → NNReal)
The topological simplex associated to x : SimplexCategory
.
This is the object part of the functor SimplexCategory.toTop
.
Equations
- x.toTopObj = {f : (CategoryTheory.forget SimplexCategory).obj x → NNReal | ∑ i : (CategoryTheory.forget SimplexCategory).obj x, f i = 1}
Instances For
instance
SimplexCategory.instCoeFunElemForallObjForgetNNRealToTopObj
(x : SimplexCategory)
:
CoeFun ↑x.toTopObj fun (x_1 : ↑x.toTopObj) => (CategoryTheory.forget SimplexCategory).obj x → NNReal
Equations
- x.instCoeFunElemForallObjForgetNNRealToTopObj = { coe := fun (f : ↑x.toTopObj) => ↑f }
def
SimplexCategory.toTopMap
{x : SimplexCategory}
{y : SimplexCategory}
(f : x ⟶ y)
(g : ↑x.toTopObj)
:
↑y.toTopObj
A morphism in SimplexCategory
induces a map on the associated topological spaces.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SimplexCategory.coe_toTopMap
{x : SimplexCategory}
{y : SimplexCategory}
(f : x ⟶ y)
(g : ↑x.toTopObj)
(i : (CategoryTheory.forget SimplexCategory).obj y)
:
↑(SimplexCategory.toTopMap f g) i = ∑ j ∈ Finset.filter (fun (x_1 : (CategoryTheory.forget SimplexCategory).obj x) => f x_1 = i) Finset.univ, ↑g j
theorem
SimplexCategory.continuous_toTopMap
{x : SimplexCategory}
{y : SimplexCategory}
(f : x ⟶ y)
:
The functor associating the topological n
-simplex to [n] : SimplexCategory
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SimplexCategory.toTop_map :
∀ {X Y : SimplexCategory} (f : X ⟶ Y),
SimplexCategory.toTop.map f = { toFun := SimplexCategory.toTopMap f, continuous_toFun := ⋯ }
@[simp]
theorem
SimplexCategory.toTop_obj
(x : SimplexCategory)
:
SimplexCategory.toTop.obj x = TopCat.of ↑x.toTopObj