Documentation

Mathlib.Analysis.Complex.Isometry

Isometries of the Complex Plane #

The lemma linear_isometry_complex states the classification of isometries in the complex plane. Specifically, isometries with rotations but without translation. The proof involves:

  1. creating a linear isometry g with two fixed points, g(0) = 0, g(1) = 1
  2. applying linear_isometry_complex_aux to g The proof of linear_isometry_complex_aux is separated in the following parts:
  3. show that the real parts match up: LinearIsometry.re_apply_eq_re
  4. show that I maps to either I or -I
  5. every z is a linear combination of a + b * I

References #

An element of the unit circle defines a LinearIsometryEquiv from to itself, by rotation.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem rotation_apply (a : Circle) (z : ) :
    @[simp]

    Takes an element of ℂ ≃ₗᵢ[ℝ] ℂ and checks if it is a rotation, returns an element of the unit circle.

    Equations
    Instances For

      The matrix representation of rotation a is equal to the conformal matrix !![re a, -im a; im a, re a].

      @[simp]

      The determinant of rotation (as a linear map) is equal to 1.

      @[simp]

      The determinant of rotation (as a linear equiv) is equal to 1.