Documentation

Mathlib.Analysis.Convex.Function

Convex and concave functions #

This file defines convex and concave functions in vector spaces and proves the finite Jensen inequality. The integral version can be found in Analysis.Convex.Integral.

A function f : E → β is ConvexOn a set s if s is itself a convex set, and for any two points x y ∈ s, the segment joining (x, f x) to (y, f y) is above the graph of f. Equivalently, ConvexOn 𝕜 f s means that the epigraph {p : E × β | p.1 ∈ s ∧ f p.1 ≤ p.2} is a convex set.

Main declarations #

def ConvexOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] (s : Set E) (f : Eβ) :

Convexity of functions

Equations
Instances For
    def ConcaveOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] (s : Set E) (f : Eβ) :

    Concavity of functions

    Equations
    Instances For
      def StrictConvexOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] (s : Set E) (f : Eβ) :

      Strict convexity of functions

      Equations
      Instances For
        def StrictConcaveOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] (s : Set E) (f : Eβ) :

        Strict concavity of functions

        Equations
        Instances For
          theorem ConvexOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) :
          theorem ConcaveOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) :
          theorem StrictConvexOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) :
          theorem StrictConcaveOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) :
          theorem convexOn_id {𝕜 : Type u_1} {β : Type u_5} [OrderedSemiring 𝕜] [OrderedAddCommMonoid β] [SMul 𝕜 β] {s : Set β} (hs : Convex 𝕜 s) :
          ConvexOn 𝕜 s id
          theorem concaveOn_id {𝕜 : Type u_1} {β : Type u_5} [OrderedSemiring 𝕜] [OrderedAddCommMonoid β] [SMul 𝕜 β] {s : Set β} (hs : Convex 𝕜 s) :
          ConcaveOn 𝕜 s id
          theorem ConvexOn.congr {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConvexOn 𝕜 s f) (hfg : Set.EqOn f g s) :
          ConvexOn 𝕜 s g
          theorem ConcaveOn.congr {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConcaveOn 𝕜 s f) (hfg : Set.EqOn f g s) :
          ConcaveOn 𝕜 s g
          theorem StrictConvexOn.congr {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConvexOn 𝕜 s f) (hfg : Set.EqOn f g s) :
          theorem StrictConcaveOn.congr {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConcaveOn 𝕜 s f) (hfg : Set.EqOn f g s) :
          theorem ConvexOn.subset {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} {t : Set E} (hf : ConvexOn 𝕜 t f) (hst : s t) (hs : Convex 𝕜 s) :
          ConvexOn 𝕜 s f
          theorem ConcaveOn.subset {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} {t : Set E} (hf : ConcaveOn 𝕜 t f) (hst : s t) (hs : Convex 𝕜 s) :
          ConcaveOn 𝕜 s f
          theorem StrictConvexOn.subset {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} {t : Set E} (hf : StrictConvexOn 𝕜 t f) (hst : s t) (hs : Convex 𝕜 s) :
          theorem StrictConcaveOn.subset {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} {t : Set E} (hf : StrictConcaveOn 𝕜 t f) (hst : s t) (hs : Convex 𝕜 s) :
          theorem ConvexOn.comp {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : ConvexOn 𝕜 (f '' s) g) (hf : ConvexOn 𝕜 s f) (hg' : MonotoneOn g (f '' s)) :
          ConvexOn 𝕜 s (g f)
          theorem ConcaveOn.comp {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : ConcaveOn 𝕜 (f '' s) g) (hf : ConcaveOn 𝕜 s f) (hg' : MonotoneOn g (f '' s)) :
          ConcaveOn 𝕜 s (g f)
          theorem ConvexOn.comp_concaveOn {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : ConvexOn 𝕜 (f '' s) g) (hf : ConcaveOn 𝕜 s f) (hg' : AntitoneOn g (f '' s)) :
          ConvexOn 𝕜 s (g f)
          theorem ConcaveOn.comp_convexOn {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : ConcaveOn 𝕜 (f '' s) g) (hf : ConvexOn 𝕜 s f) (hg' : AntitoneOn g (f '' s)) :
          ConcaveOn 𝕜 s (g f)
          theorem StrictConvexOn.comp {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : StrictConvexOn 𝕜 (f '' s) g) (hf : StrictConvexOn 𝕜 s f) (hg' : StrictMonoOn g (f '' s)) (hf' : Set.InjOn f s) :
          theorem StrictConcaveOn.comp {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : StrictConcaveOn 𝕜 (f '' s) g) (hf : StrictConcaveOn 𝕜 s f) (hg' : StrictMonoOn g (f '' s)) (hf' : Set.InjOn f s) :
          theorem StrictConvexOn.comp_strictConcaveOn {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : StrictConvexOn 𝕜 (f '' s) g) (hf : StrictConcaveOn 𝕜 s f) (hg' : StrictAntiOn g (f '' s)) (hf' : Set.InjOn f s) :
          theorem StrictConcaveOn.comp_strictConvexOn {𝕜 : Type u_1} {E : Type u_2} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 α] [SMul 𝕜 β] {s : Set E} {f : Eβ} {g : βα} (hg : StrictConcaveOn 𝕜 (f '' s) g) (hf : StrictConvexOn 𝕜 s f) (hg' : StrictAntiOn g (f '' s)) (hf' : Set.InjOn f s) :
          theorem ConvexOn.add {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConvexOn 𝕜 s f) (hg : ConvexOn 𝕜 s g) :
          ConvexOn 𝕜 s (f + g)
          theorem ConcaveOn.add {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConcaveOn 𝕜 s f) (hg : ConcaveOn 𝕜 s g) :
          ConcaveOn 𝕜 s (f + g)
          theorem convexOn_const {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} (c : β) (hs : Convex 𝕜 s) :
          ConvexOn 𝕜 s fun (x : E) => c
          theorem concaveOn_const {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} (c : β) (hs : Convex 𝕜 s) :
          ConcaveOn 𝕜 s fun (x : E) => c
          theorem ConvexOn.add_const {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) (b : β) :
          ConvexOn 𝕜 s (f + fun (x : E) => b)
          theorem ConcaveOn.add_const {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) (b : β) :
          ConcaveOn 𝕜 s (f + fun (x : E) => b)
          theorem convexOn_of_convex_epigraph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} (h : Convex 𝕜 {p : E × β | p.1 s f p.1 p.2}) :
          ConvexOn 𝕜 s f
          theorem concaveOn_of_convex_hypograph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} (h : Convex 𝕜 {p : E × β | p.1 s p.2 f p.1}) :
          ConcaveOn 𝕜 s f
          theorem ConvexOn.convex_le {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) (r : β) :
          Convex 𝕜 {x : E | x s f x r}
          theorem ConcaveOn.convex_ge {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) (r : β) :
          Convex 𝕜 {x : E | x s r f x}
          theorem ConvexOn.convex_epigraph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) :
          Convex 𝕜 {p : E × β | p.1 s f p.1 p.2}
          theorem ConcaveOn.convex_hypograph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) :
          Convex 𝕜 {p : E × β | p.1 s p.2 f p.1}
          theorem convexOn_iff_convex_epigraph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} :
          ConvexOn 𝕜 s f Convex 𝕜 {p : E × β | p.1 s f p.1 p.2}
          theorem concaveOn_iff_convex_hypograph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} :
          ConcaveOn 𝕜 s f Convex 𝕜 {p : E × β | p.1 s p.2 f p.1}
          theorem ConvexOn.translate_right {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) (c : E) :
          ConvexOn 𝕜 ((fun (z : E) => c + z) ⁻¹' s) (f fun (z : E) => c + z)

          Right translation preserves convexity.

          theorem ConcaveOn.translate_right {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) (c : E) :
          ConcaveOn 𝕜 ((fun (z : E) => c + z) ⁻¹' s) (f fun (z : E) => c + z)

          Right translation preserves concavity.

          theorem ConvexOn.translate_left {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) (c : E) :
          ConvexOn 𝕜 ((fun (z : E) => c + z) ⁻¹' s) (f fun (z : E) => z + c)

          Left translation preserves convexity.

          theorem ConcaveOn.translate_left {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) (c : E) :
          ConcaveOn 𝕜 ((fun (z : E) => c + z) ⁻¹' s) (f fun (z : E) => z + c)

          Left translation preserves concavity.

          theorem convexOn_iff_forall_pos {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConvexOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1f (a x + b y) a f x + b f y
          theorem concaveOn_iff_forall_pos {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConcaveOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1a f x + b f y f (a x + b y)
          theorem convexOn_iff_pairwise_pos {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConvexOn 𝕜 s f Convex 𝕜 s s.Pairwise fun (x y : E) => ∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1f (a x + b y) a f x + b f y
          theorem concaveOn_iff_pairwise_pos {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConcaveOn 𝕜 s f Convex 𝕜 s s.Pairwise fun (x y : E) => ∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1a f x + b f y f (a x + b y)
          theorem LinearMap.convexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] (f : E →ₗ[𝕜] β) {s : Set E} (hs : Convex 𝕜 s) :
          ConvexOn 𝕜 s f

          A linear map is convex.

          theorem LinearMap.concaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] (f : E →ₗ[𝕜] β) {s : Set E} (hs : Convex 𝕜 s) :
          ConcaveOn 𝕜 s f

          A linear map is concave.

          theorem StrictConvexOn.convexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) :
          ConvexOn 𝕜 s f
          theorem StrictConcaveOn.concaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) :
          ConcaveOn 𝕜 s f
          theorem StrictConvexOn.convex_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) (r : β) :
          Convex 𝕜 {x : E | x s f x < r}
          theorem StrictConcaveOn.convex_gt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) (r : β) :
          Convex 𝕜 {x : E | x s r < f x}
          theorem LinearOrder.convexOn_of_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [LinearOrder E] {s : Set E} {f : Eβ} (hs : Convex 𝕜 s) (hf : ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y sx < y∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1f (a x + b y) a f x + b f y) :
          ConvexOn 𝕜 s f

          For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is convex, it suffices to verify the inequality f (a • x + b • y) ≤ a • f x + b • f y only for x < y and positive a, b. The main use case is E = 𝕜 however one can apply it, e.g., to 𝕜^n with lexicographic order.

          theorem LinearOrder.concaveOn_of_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [LinearOrder E] {s : Set E} {f : Eβ} (hs : Convex 𝕜 s) (hf : ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y sx < y∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1a f x + b f y f (a x + b y)) :
          ConcaveOn 𝕜 s f

          For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is concave it suffices to verify the inequality a • f x + b • f y ≤ f (a • x + b • y) for x < y and positive a, b. The main use case is E = ℝ however one can apply it, e.g., to ℝ^n with lexicographic order.

          theorem LinearOrder.strictConvexOn_of_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [LinearOrder E] {s : Set E} {f : Eβ} (hs : Convex 𝕜 s) (hf : ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y sx < y∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1f (a x + b y) < a f x + b f y) :

          For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is strictly convex, it suffices to verify the inequality f (a • x + b • y) < a • f x + b • f y for x < y and positive a, b. The main use case is E = 𝕜 however one can apply it, e.g., to 𝕜^n with lexicographic order.

          theorem LinearOrder.strictConcaveOn_of_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [LinearOrder E] {s : Set E} {f : Eβ} (hs : Convex 𝕜 s) (hf : ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y sx < y∀ ⦃a b : 𝕜⦄, 0 < a0 < ba + b = 1a f x + b f y < f (a x + b y)) :

          For a function on a convex set in a linearly ordered space (where the order and the algebraic structures aren't necessarily compatible), in order to prove that it is strictly concave it suffices to verify the inequality a • f x + b • f y < f (a • x + b • y) for x < y and positive a, b. The main use case is E = 𝕜 however one can apply it, e.g., to 𝕜^n with lexicographic order.

          theorem ConvexOn.comp_linearMap {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [AddCommMonoid F] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 F] [SMul 𝕜 β] {f : Fβ} {s : Set F} (hf : ConvexOn 𝕜 s f) (g : E →ₗ[𝕜] F) :

          If g is convex on s, so is (f ∘ g) on f ⁻¹' s for a linear f.

          theorem ConcaveOn.comp_linearMap {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [AddCommMonoid F] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 F] [SMul 𝕜 β] {f : Fβ} {s : Set F} (hf : ConcaveOn 𝕜 s f) (g : E →ₗ[𝕜] F) :

          If g is concave on s, so is (g ∘ f) on f ⁻¹' s for a linear f.

          theorem StrictConvexOn.add_convexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConvexOn 𝕜 s f) (hg : ConvexOn 𝕜 s g) :
          theorem ConvexOn.add_strictConvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConvexOn 𝕜 s f) (hg : StrictConvexOn 𝕜 s g) :
          theorem StrictConvexOn.add {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConvexOn 𝕜 s f) (hg : StrictConvexOn 𝕜 s g) :
          theorem StrictConcaveOn.add_concaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConcaveOn 𝕜 s f) (hg : ConcaveOn 𝕜 s g) :
          theorem ConcaveOn.add_strictConcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConcaveOn 𝕜 s f) (hg : StrictConcaveOn 𝕜 s g) :
          theorem StrictConcaveOn.add {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [SMul 𝕜 E] [DistribMulAction 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConcaveOn 𝕜 s f) (hg : StrictConcaveOn 𝕜 s g) :
          theorem StrictConvexOn.add_const {𝕜 : Type u_1} {E : Type u_2} [OrderedSemiring 𝕜] [AddCommMonoid E] [SMul 𝕜 E] {s : Set E} {γ : Type u_7} {f : Eγ} [OrderedCancelAddCommMonoid γ] [Module 𝕜 γ] (hf : StrictConvexOn 𝕜 s f) (b : γ) :
          StrictConvexOn 𝕜 s (f + fun (x : E) => b)
          theorem StrictConcaveOn.add_const {𝕜 : Type u_1} {E : Type u_2} [OrderedSemiring 𝕜] [AddCommMonoid E] [SMul 𝕜 E] {s : Set E} {γ : Type u_7} {f : Eγ} [OrderedCancelAddCommMonoid γ] [Module 𝕜 γ] (hf : StrictConcaveOn 𝕜 s f) (b : γ) :
          StrictConcaveOn 𝕜 s (f + fun (x : E) => b)
          theorem ConvexOn.convex_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) (r : β) :
          Convex 𝕜 {x : E | x s f x < r}
          theorem ConcaveOn.convex_gt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) (r : β) :
          Convex 𝕜 {x : E | x s r < f x}
          theorem ConvexOn.openSegment_subset_strict_epigraph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) (p q : E × β) (hp : p.1 s f p.1 < p.2) (hq : q.1 s f q.1 q.2) :
          openSegment 𝕜 p q {p : E × β | p.1 s f p.1 < p.2}
          theorem ConcaveOn.openSegment_subset_strict_hypograph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) (p q : E × β) (hp : p.1 s p.2 < f p.1) (hq : q.1 s q.2 f q.1) :
          openSegment 𝕜 p q {p : E × β | p.1 s p.2 < f p.1}
          theorem ConvexOn.convex_strict_epigraph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) :
          Convex 𝕜 {p : E × β | p.1 s f p.1 < p.2}
          theorem ConcaveOn.convex_strict_hypograph {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) :
          Convex 𝕜 {p : E × β | p.1 s p.2 < f p.1}
          theorem ConvexOn.sup {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConvexOn 𝕜 s f) (hg : ConvexOn 𝕜 s g) :
          ConvexOn 𝕜 s (f g)

          The pointwise maximum of convex functions is convex.

          theorem ConcaveOn.inf {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConcaveOn 𝕜 s f) (hg : ConcaveOn 𝕜 s g) :
          ConcaveOn 𝕜 s (f g)

          The pointwise minimum of concave functions is concave.

          theorem StrictConvexOn.sup {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConvexOn 𝕜 s f) (hg : StrictConvexOn 𝕜 s g) :

          The pointwise maximum of strictly convex functions is strictly convex.

          theorem StrictConcaveOn.inf {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConcaveOn 𝕜 s f) (hg : StrictConcaveOn 𝕜 s g) :

          The pointwise minimum of strictly concave functions is strictly concave.

          theorem ConvexOn.le_on_segment' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) {a b : 𝕜} (ha : 0 a) (hb : 0 b) (hab : a + b = 1) :

          A convex function on a segment is upper-bounded by the max of its endpoints.

          theorem ConcaveOn.ge_on_segment' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) {a b : 𝕜} (ha : 0 a) (hb : 0 b) (hab : a + b = 1) :
          f x f y f (a x + b y)

          A concave function on a segment is lower-bounded by the min of its endpoints.

          theorem ConvexOn.le_on_segment {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z segment 𝕜 x y) :

          A convex function on a segment is upper-bounded by the max of its endpoints.

          theorem ConcaveOn.ge_on_segment {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z segment 𝕜 x y) :
          f x f y f z

          A concave function on a segment is lower-bounded by the min of its endpoints.

          theorem StrictConvexOn.lt_on_open_segment' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) (hxy : x y) {a b : 𝕜} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :

          A strictly convex function on an open segment is strictly upper-bounded by the max of its endpoints.

          theorem StrictConcaveOn.lt_on_open_segment' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) (hxy : x y) {a b : 𝕜} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) :
          f x f y < f (a x + b y)

          A strictly concave function on an open segment is strictly lower-bounded by the min of its endpoints.

          theorem StrictConvexOn.lt_on_openSegment {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hxy : x y) (hz : z openSegment 𝕜 x y) :

          A strictly convex function on an open segment is strictly upper-bounded by the max of its endpoints.

          theorem StrictConcaveOn.lt_on_openSegment {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hxy : x y) (hz : z openSegment 𝕜 x y) :
          f x f y < f z

          A strictly concave function on an open segment is strictly lower-bounded by the min of its endpoints.

          theorem ConvexOn.le_left_of_right_le' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) {a b : 𝕜} (ha : 0 < a) (hb : 0 b) (hab : a + b = 1) (hfy : f y f (a x + b y)) :
          f (a x + b y) f x
          theorem ConcaveOn.left_le_of_le_right' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) {a b : 𝕜} (ha : 0 < a) (hb : 0 b) (hab : a + b = 1) (hfy : f (a x + b y) f y) :
          theorem ConvexOn.le_right_of_left_le' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y : E} {a b : 𝕜} (hx : x s) (hy : y s) (ha : 0 a) (hb : 0 < b) (hab : a + b = 1) (hfx : f x f (a x + b y)) :
          f (a x + b y) f y
          theorem ConcaveOn.right_le_of_le_left' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y : E} {a b : 𝕜} (hx : x s) (hy : y s) (ha : 0 a) (hb : 0 < b) (hab : a + b = 1) (hfx : f (a x + b y) f x) :
          theorem ConvexOn.le_left_of_right_le {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hyz : f y f z) :
          theorem ConcaveOn.left_le_of_le_right {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hyz : f z f y) :
          theorem ConvexOn.le_right_of_left_le {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hxz : f x f z) :
          theorem ConcaveOn.right_le_of_le_left {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hxz : f z f x) :
          theorem ConvexOn.lt_left_of_right_lt' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) {a b : 𝕜} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfy : f y < f (a x + b y)) :
          f (a x + b y) < f x
          theorem ConcaveOn.left_lt_of_lt_right' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y : E} (hx : x s) (hy : y s) {a b : 𝕜} (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfy : f (a x + b y) < f y) :
          theorem ConvexOn.lt_right_of_left_lt' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y : E} {a b : 𝕜} (hx : x s) (hy : y s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfx : f x < f (a x + b y)) :
          f (a x + b y) < f y
          theorem ConcaveOn.lt_right_of_left_lt' {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y : E} {a b : 𝕜} (hx : x s) (hy : y s) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1) (hfx : f (a x + b y) < f x) :
          theorem ConvexOn.lt_left_of_right_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hyz : f y < f z) :
          f z < f x
          theorem ConcaveOn.left_lt_of_lt_right {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hyz : f z < f y) :
          f x < f z
          theorem ConvexOn.lt_right_of_left_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hxz : f x < f z) :
          f z < f y
          theorem ConcaveOn.lt_right_of_left_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) {x y z : E} (hx : x s) (hy : y s) (hz : z openSegment 𝕜 x y) (hxz : f z < f x) :
          f y < f z
          @[simp]
          theorem neg_convexOn_iff {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConvexOn 𝕜 s (-f) ConcaveOn 𝕜 s f

          A function -f is convex iff f is concave.

          @[simp]
          theorem neg_concaveOn_iff {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConcaveOn 𝕜 s (-f) ConvexOn 𝕜 s f

          A function -f is concave iff f is convex.

          @[simp]
          theorem neg_strictConvexOn_iff {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :

          A function -f is strictly convex iff f is strictly concave.

          @[simp]
          theorem neg_strictConcaveOn_iff {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :

          A function -f is strictly concave iff f is strictly convex.

          theorem ConcaveOn.neg {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConcaveOn 𝕜 s fConvexOn 𝕜 s (-f)

          Alias of the reverse direction of neg_convexOn_iff.


          A function -f is convex iff f is concave.

          theorem ConvexOn.neg {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          ConvexOn 𝕜 s fConcaveOn 𝕜 s (-f)

          Alias of the reverse direction of neg_concaveOn_iff.


          A function -f is concave iff f is convex.

          theorem StrictConcaveOn.neg {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          StrictConcaveOn 𝕜 s fStrictConvexOn 𝕜 s (-f)

          Alias of the reverse direction of neg_strictConvexOn_iff.


          A function -f is strictly convex iff f is strictly concave.

          theorem StrictConvexOn.neg {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f : Eβ} :
          StrictConvexOn 𝕜 s fStrictConcaveOn 𝕜 s (-f)

          Alias of the reverse direction of neg_strictConcaveOn_iff.


          A function -f is strictly concave iff f is strictly convex.

          theorem ConvexOn.sub {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConvexOn 𝕜 s f) (hg : ConcaveOn 𝕜 s g) :
          ConvexOn 𝕜 s (f - g)
          theorem ConcaveOn.sub {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConcaveOn 𝕜 s f) (hg : ConvexOn 𝕜 s g) :
          ConcaveOn 𝕜 s (f - g)
          theorem StrictConvexOn.sub {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConvexOn 𝕜 s f) (hg : StrictConcaveOn 𝕜 s g) :
          theorem StrictConcaveOn.sub {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConcaveOn 𝕜 s f) (hg : StrictConvexOn 𝕜 s g) :
          theorem ConvexOn.sub_strictConcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConvexOn 𝕜 s f) (hg : StrictConcaveOn 𝕜 s g) :
          theorem ConcaveOn.sub_strictConvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : ConcaveOn 𝕜 s f) (hg : StrictConvexOn 𝕜 s g) :
          theorem StrictConvexOn.sub_concaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConvexOn 𝕜 s f) (hg : ConcaveOn 𝕜 s g) :
          theorem StrictConcaveOn.sub_convexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommGroup β] [SMul 𝕜 E] [Module 𝕜 β] {s : Set E} {f g : Eβ} (hf : StrictConcaveOn 𝕜 s f) (hg : ConvexOn 𝕜 s g) :
          theorem StrictConvexOn.translate_right {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCancelCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) (c : E) :
          StrictConvexOn 𝕜 ((fun (z : E) => c + z) ⁻¹' s) (f fun (z : E) => c + z)

          Right translation preserves strict convexity.

          theorem StrictConcaveOn.translate_right {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCancelCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) (c : E) :

          Right translation preserves strict concavity.

          theorem StrictConvexOn.translate_left {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCancelCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConvexOn 𝕜 s f) (c : E) :
          StrictConvexOn 𝕜 ((fun (z : E) => c + z) ⁻¹' s) (f fun (z : E) => z + c)

          Left translation preserves strict convexity.

          theorem StrictConcaveOn.translate_left {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedSemiring 𝕜] [AddCancelCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} (hf : StrictConcaveOn 𝕜 s f) (c : E) :

          Left translation preserves strict concavity.

          theorem ConvexOn.smul {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedCommSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} {c : 𝕜} (hc : 0 c) (hf : ConvexOn 𝕜 s f) :
          ConvexOn 𝕜 s fun (x : E) => c f x
          theorem ConcaveOn.smul {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [OrderedCommSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} {c : 𝕜} (hc : 0 c) (hf : ConcaveOn 𝕜 s f) :
          ConcaveOn 𝕜 s fun (x : E) => c f x
          theorem ConvexOn.comp_affineMap {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {β : Type u_5} [LinearOrderedField 𝕜] [AddCommGroup E] [AddCommGroup F] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 F] [SMul 𝕜 β] {f : Fβ} (g : E →ᵃ[𝕜] F) {s : Set F} (hf : ConvexOn 𝕜 s f) :

          If a function is convex on s, it remains convex when precomposed by an affine map.

          theorem ConcaveOn.comp_affineMap {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {β : Type u_5} [LinearOrderedField 𝕜] [AddCommGroup E] [AddCommGroup F] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 F] [SMul 𝕜 β] {f : Fβ} (g : E →ᵃ[𝕜] F) {s : Set F} (hf : ConcaveOn 𝕜 s f) :

          If a function is concave on s, it remains concave when precomposed by an affine map.

          theorem convexOn_iff_div {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [LinearOrderedField 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} :
          ConvexOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 a0 b0 < a + bf ((a / (a + b)) x + (b / (a + b)) y) (a / (a + b)) f x + (b / (a + b)) f y
          theorem concaveOn_iff_div {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [LinearOrderedField 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} :
          ConcaveOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 a0 b0 < a + b(a / (a + b)) f x + (b / (a + b)) f y f ((a / (a + b)) x + (b / (a + b)) y)
          theorem strictConvexOn_iff_div {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [LinearOrderedField 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} :
          StrictConvexOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y sx y∀ ⦃a b : 𝕜⦄, 0 < a0 < bf ((a / (a + b)) x + (b / (a + b)) y) < (a / (a + b)) f x + (b / (a + b)) f y
          theorem strictConcaveOn_iff_div {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [LinearOrderedField 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [SMul 𝕜 E] [SMul 𝕜 β] {s : Set E} {f : Eβ} :
          StrictConcaveOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y sx y∀ ⦃a b : 𝕜⦄, 0 < a0 < b(a / (a + b)) f x + (b / (a + b)) f y < f ((a / (a + b)) x + (b / (a + b)) y)
          theorem OrderIso.strictConvexOn_symm {𝕜 : Type u_1} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [OrderedAddCommMonoid α] [SMul 𝕜 α] [OrderedAddCommMonoid β] [SMul 𝕜 β] (f : α ≃o β) (hf : StrictConcaveOn 𝕜 _root_.Set.univ f) :
          theorem OrderIso.convexOn_symm {𝕜 : Type u_1} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [OrderedAddCommMonoid α] [SMul 𝕜 α] [OrderedAddCommMonoid β] [SMul 𝕜 β] (f : α ≃o β) (hf : ConcaveOn 𝕜 _root_.Set.univ f) :
          theorem OrderIso.strictConcaveOn_symm {𝕜 : Type u_1} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [OrderedAddCommMonoid α] [SMul 𝕜 α] [OrderedAddCommMonoid β] [SMul 𝕜 β] (f : α ≃o β) (hf : StrictConvexOn 𝕜 _root_.Set.univ f) :
          theorem OrderIso.concaveOn_symm {𝕜 : Type u_1} {α : Type u_4} {β : Type u_5} [OrderedSemiring 𝕜] [OrderedAddCommMonoid α] [SMul 𝕜 α] [OrderedAddCommMonoid β] [SMul 𝕜 β] (f : α ≃o β) (hf : ConvexOn 𝕜 _root_.Set.univ f) :
          theorem StrictConvexOn.eq_of_isMinOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [LinearOrderedField 𝕜] [OrderedAddCommMonoid β] [AddCommMonoid E] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {f : Eβ} {s : Set E} {x y : E} (hf : StrictConvexOn 𝕜 s f) (hfx : IsMinOn f s x) (hfy : IsMinOn f s y) (hx : x s) (hy : y s) :
          x = y

          A strictly convex function admits at most one global minimum.

          theorem StrictConcaveOn.eq_of_isMaxOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_5} [LinearOrderedField 𝕜] [OrderedAddCommMonoid β] [AddCommMonoid E] [SMul 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {f : Eβ} {s : Set E} {x y : E} (hf : StrictConcaveOn 𝕜 s f) (hfx : IsMaxOn f s x) (hfy : IsMaxOn f s y) (hx : x s) (hy : y s) :
          x = y

          A strictly concave function admits at most one global maximum.

          theorem ConvexOn.le_right_of_left_le'' {𝕜 : Type u_1} {β : Type u_5} [LinearOrderedField 𝕜] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 β] [OrderedSMul 𝕜 β] {x y z : 𝕜} {s : Set 𝕜} {f : 𝕜β} (hf : ConvexOn 𝕜 s f) (hx : x s) (hz : z s) (hxy : x < y) (hyz : y z) (h : f x f y) :
          theorem ConvexOn.le_left_of_right_le'' {𝕜 : Type u_1} {β : Type u_5} [LinearOrderedField 𝕜] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 β] [OrderedSMul 𝕜 β] {x y z : 𝕜} {s : Set 𝕜} {f : 𝕜β} (hf : ConvexOn 𝕜 s f) (hx : x s) (hz : z s) (hxy : x y) (hyz : y < z) (h : f z f y) :
          theorem ConcaveOn.right_le_of_le_left'' {𝕜 : Type u_1} {β : Type u_5} [LinearOrderedField 𝕜] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 β] [OrderedSMul 𝕜 β] {x y z : 𝕜} {s : Set 𝕜} {f : 𝕜β} (hf : ConcaveOn 𝕜 s f) (hx : x s) (hz : z s) (hxy : x < y) (hyz : y z) (h : f y f x) :
          theorem ConcaveOn.left_le_of_le_right'' {𝕜 : Type u_1} {β : Type u_5} [LinearOrderedField 𝕜] [LinearOrderedCancelAddCommMonoid β] [Module 𝕜 β] [OrderedSMul 𝕜 β] {x y z : 𝕜} {s : Set 𝕜} {f : 𝕜β} (hf : ConcaveOn 𝕜 s f) (hx : x s) (hz : z s) (hxy : x y) (hyz : y < z) (h : f y f z) :