Documentation

Mathlib.Analysis.SpecialFunctions.Gaussian.PoissonSummation

Poisson summation applied to the Gaussian #

In Real.tsum_exp_neg_mul_int_sq and Complex.tsum_exp_neg_mul_int_sq, we use Poisson summation to prove the identity

∑' (n : ℤ), exp (-π * a * n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ℤ), exp (-π / a * n ^ 2)

for positive real a, or complex a with positive real part. (See also NumberTheory.ModularForms.JacobiTheta.)

First we show that Gaussian-type functions have rapid decay along cocompact ℝ.

theorem Complex.tsum_exp_neg_quadratic {a : } (ha : 0 < a.re) (b : ) :
∑' (n : ), exp (-Real.pi * a * n ^ 2 + 2 * Real.pi * b * n) = 1 / a ^ (1 / 2) * ∑' (n : ), exp (-Real.pi / a * (n + I * b) ^ 2)

Jacobi's theta-function transformation formula for the sum of exp -Q(x), where Q is a negative definite quadratic form.

theorem Complex.tsum_exp_neg_mul_int_sq {a : } (ha : 0 < a.re) :
∑' (n : ), exp (-Real.pi * a * n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ), exp (-Real.pi / a * n ^ 2)
theorem Real.tsum_exp_neg_mul_int_sq {a : } (ha : 0 < a) :
∑' (n : ), exp (-Real.pi * a * n ^ 2) = 1 / a ^ (1 / 2) * ∑' (n : ), exp (-Real.pi / a * n ^ 2)