Documentation

Mathlib.Analysis.SpecialFunctions.Log.ENNRealLog

Extended Nonnegative Real Logarithm #

We define log as an extension of the logarithm of a positive real to the extended nonnegative reals ℝ≥0∞. The function takes values in the extended reals EReal, with log 0 = ⊥ and log ⊤ = ⊤.

Main Definitions #

Main Results #

Tags #

ENNReal, EReal, logarithm

Definition #

noncomputable def ENNReal.log (x : ENNReal) :

The logarithm function defined on the extended nonnegative reals ℝ≥0∞ to the extended reals EReal. Coincides with the usual logarithm function and with Real.log on positive reals, and takes values log 0 = ⊥ and log ⊤ = ⊤. Conventions about multiplication in ℝ≥0∞ and addition in EReal make the identity log (x * y) = log x + log y unconditional.

Equations
Instances For
    @[simp]
    @[simp]
    theorem ENNReal.log_one :
    log 1 = 0
    @[simp]
    theorem ENNReal.log_pos_real {x : ENNReal} (h : x 0) (h' : x ) :
    theorem ENNReal.log_of_nnreal {x : NNReal} (h : x 0) :

    Monotonicity #

    @[simp]
    theorem ENNReal.log_eq_iff {x y : ENNReal} :
    @[simp]
    @[simp]
    @[simp]
    @[simp]
    @[simp]

    Algebraic properties #

    theorem ENNReal.log_pow {x : ENNReal} {n : } :
    theorem ENNReal.log_rpow {x : ENNReal} {y : } :