Documentation

Mathlib.Analysis.SpecialFunctions.Log.PosLog

The Positive Part of the Logarithm #

This file defines the function Real.posLog = r ↦ max 0 (log r) and introduces the notation log⁺. For a finite length-n sequence f i of reals, it establishes the following standard estimates.

Definition, Notation and Reformulations #

noncomputable def Real.posLog :

Definition: the positive part of the logarithm.

Equations
Instances For

    Notation log⁺ for the positive part of the logarithm.

    Equations
    Instances For

      Definition of the positive part of the logarithm, formulated as a theorem.

      Elementary Properties #

      Presentation of log in terms of its positive part.

      Presentation of log⁺ in terms of log.

      The positive part of log is never negative.

      @[simp]
      theorem Real.posLog_neg (x : ) :

      The function log⁺ is even.

      @[simp]
      theorem Real.posLog_abs (x : ) :

      The function log⁺ is even.

      The function log⁺ is zero in the interval [-1,1].

      theorem Real.posLog_eq_log {x : } (hx : 1 |x|) :

      The function log⁺ equals log outside of the interval (-1,1).

      The function log⁺ equals log for all natural numbers.

      The function log⁺ is monotone on the positive axis.

      Estimates for Products #

      Estimate for log⁺ of a product. See Real.posLog_prod for a variant involving multiple factors.

      theorem Real.posLog_nat_mul {n : } {a : } :

      Estimate for log⁺ of a product. Special case of Real.posLog_mul where one of the factors is a natural number.

      theorem Real.posLog_prod {α : Type u_1} (s : Finset α) (f : α) :

      Estimate for log⁺ of a product. See Real.posLog_mul for a variant with only two factors.

      Estimates for Sums #

      theorem Real.posLog_sum {α : Type u_1} (s : Finset α) (f : α) :
      (∑ ts, f t).posLog log s.card + ts, (f t).posLog

      Estimate for log⁺ of a sum. See Real.posLog_add for a variant involving just two summands.

      theorem Real.posLog_add {a b : } :

      Estimate for log⁺ of a sum. See Real.posLog_sum for a variant involving multiple summands.