Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle

The type of angles #

In this file we define Real.Angle to be the quotient group ℝ/2πℤ and prove a few simple lemmas about trigonometric functions and angles.

The type of angles

Equations
Instances For

    The canonical map from to the quotient Angle.

    Equations
    Instances For

      Coercion ℝ → Angle as an additive homomorphism.

      Equations
      Instances For
        theorem Real.Angle.induction_on {p : AngleProp} (θ : Angle) (h : ∀ (x : ), p x) :
        p θ

        An induction principle to deduce results for Angle from those for , used with induction θ using Real.Angle.induction_on.

        @[simp]
        theorem Real.Angle.coe_add (x y : ) :
        (x + y) = x + y
        @[simp]
        theorem Real.Angle.coe_neg (x : ) :
        (-x) = -x
        @[simp]
        theorem Real.Angle.coe_sub (x y : ) :
        (x - y) = x - y
        theorem Real.Angle.coe_nsmul (n : ) (x : ) :
        (n x) = n x
        theorem Real.Angle.coe_zsmul (z : ) (x : ) :
        (z x) = z x
        @[simp]
        @[simp]
        theorem Real.Angle.angle_eq_iff_two_pi_dvd_sub {ψ θ : } :
        θ = ψ ∃ (k : ), θ - ψ = 2 * Real.pi * k
        @[simp]
        theorem Real.Angle.two_nsmul_coe_div_two (θ : ) :
        2 (θ / 2) = θ
        @[simp]
        theorem Real.Angle.two_zsmul_coe_div_two (θ : ) :
        2 (θ / 2) = θ
        theorem Real.Angle.zsmul_eq_iff {ψ θ : Angle} {z : } (hz : z 0) :
        z ψ = z θ ∃ (k : Fin z.natAbs), ψ = θ + k (2 * Real.pi / z)
        theorem Real.Angle.nsmul_eq_iff {ψ θ : Angle} {n : } (hz : n 0) :
        n ψ = n θ ∃ (k : Fin n), ψ = θ + k (2 * Real.pi / n)
        theorem Real.Angle.cos_sin_inj {θ ψ : } (Hcos : Real.cos θ = Real.cos ψ) (Hsin : Real.sin θ = Real.sin ψ) :
        θ = ψ

        The sine of a Real.Angle.

        Equations
        Instances For

          The cosine of a Real.Angle.

          Equations
          Instances For
            @[simp]
            @[simp]
            theorem Real.Angle.sin_neg (θ : Angle) :
            (-θ).sin = -θ.sin
            @[simp]
            @[simp]
            @[simp]
            @[simp]
            theorem Real.Angle.cos_neg (θ : Angle) :
            (-θ).cos = θ.cos
            @[simp]
            @[simp]
            theorem Real.Angle.sin_add (θ₁ θ₂ : Angle) :
            (θ₁ + θ₂).sin = θ₁.sin * θ₂.cos + θ₁.cos * θ₂.sin
            theorem Real.Angle.cos_add (θ₁ θ₂ : Angle) :
            (θ₁ + θ₂).cos = θ₁.cos * θ₂.cos - θ₁.sin * θ₂.sin
            @[simp]
            @[simp]
            theorem Real.Angle.coe_toIcoMod (θ ψ : ) :
            @[simp]
            theorem Real.Angle.coe_toIocMod (θ ψ : ) :

            Convert a Real.Angle to a real number in the interval Ioc (-π) π.

            Equations
            Instances For
              @[simp]
              @[simp]
              @[simp]
              @[simp]

              The tangent of a Real.Angle.

              Equations
              Instances For
                @[simp]
                @[simp]
                @[simp]
                @[simp]

                The sign of a Real.Angle is 0 if the angle is 0 or π, 1 if the angle is strictly between 0 and π and -1 is the angle is strictly between and 0. It is defined as the sign of the sine of the angle.

                Equations
                Instances For
                  @[simp]
                  @[simp]
                  theorem Real.Angle.sign_neg (θ : Angle) :
                  (-θ).sign = -θ.sign
                  @[simp]
                  @[simp]
                  @[simp]
                  @[simp]
                  theorem ContinuousOn.angle_sign_comp {α : Type u_1} [TopologicalSpace α] {f : αReal.Angle} {s : Set α} (hf : ContinuousOn f s) (hs : zs, f z 0 f z Real.pi) :
                  theorem Real.Angle.sign_eq_of_continuousOn {α : Type u_1} [TopologicalSpace α] {f : αAngle} {s : Set α} {x y : α} (hc : IsConnected s) (hf : ContinuousOn f s) (hs : zs, f z 0 f z Real.pi) (hx : x s) (hy : y s) :

                  Suppose a function to angles is continuous on a connected set and never takes the values 0 or π on that set. Then the values of the function on that set all have the same sign.