Documentation
Mathlib
.
Analysis
.
SpecialFunctions
.
Trigonometric
.
InverseDeriv
Search
return to top
source
Imports
Init
Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
Imported by
Real
.
deriv_arcsin_aux
Real
.
hasStrictDerivAt_arcsin
Real
.
hasDerivAt_arcsin
Real
.
contDiffAt_arcsin
Real
.
hasDerivWithinAt_arcsin_Ici
Real
.
hasDerivWithinAt_arcsin_Iic
Real
.
differentiableWithinAt_arcsin_Ici
Real
.
differentiableWithinAt_arcsin_Iic
Real
.
differentiableAt_arcsin
Real
.
deriv_arcsin
Real
.
differentiableOn_arcsin
Real
.
contDiffOn_arcsin
Real
.
contDiffAt_arcsin_iff
Real
.
hasStrictDerivAt_arccos
Real
.
hasDerivAt_arccos
Real
.
contDiffAt_arccos
Real
.
hasDerivWithinAt_arccos_Ici
Real
.
hasDerivWithinAt_arccos_Iic
Real
.
differentiableWithinAt_arccos_Ici
Real
.
differentiableWithinAt_arccos_Iic
Real
.
differentiableAt_arccos
Real
.
deriv_arccos
Real
.
differentiableOn_arccos
Real
.
contDiffOn_arccos
Real
.
contDiffAt_arccos_iff
derivatives of the inverse trigonometric functions
#
Derivatives of
arcsin
and
arccos
.
source
theorem
Real
.
deriv_arcsin_aux
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
:
HasStrictDerivAt
arcsin
(
1
/
√
(
1
-
x
^
2
))
x
∧
ContDiffAt
ℝ
⊤
arcsin
x
source
theorem
Real
.
hasStrictDerivAt_arcsin
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
:
HasStrictDerivAt
arcsin
(
1
/
√
(
1
-
x
^
2
))
x
source
theorem
Real
.
hasDerivAt_arcsin
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
:
HasDerivAt
arcsin
(
1
/
√
(
1
-
x
^
2
))
x
source
theorem
Real
.
contDiffAt_arcsin
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
{n :
WithTop
ℕ∞
}
:
ContDiffAt
ℝ
n
arcsin
x
source
theorem
Real
.
hasDerivWithinAt_arcsin_Ici
{x :
ℝ
}
(h :
x
≠
-
1
)
:
HasDerivWithinAt
arcsin
(
1
/
√
(
1
-
x
^
2
))
(
Set.Ici
x
)
x
source
theorem
Real
.
hasDerivWithinAt_arcsin_Iic
{x :
ℝ
}
(h :
x
≠
1
)
:
HasDerivWithinAt
arcsin
(
1
/
√
(
1
-
x
^
2
))
(
Set.Iic
x
)
x
source
theorem
Real
.
differentiableWithinAt_arcsin_Ici
{x :
ℝ
}
:
DifferentiableWithinAt
ℝ
arcsin
(
Set.Ici
x
)
x
↔
x
≠
-
1
source
theorem
Real
.
differentiableWithinAt_arcsin_Iic
{x :
ℝ
}
:
DifferentiableWithinAt
ℝ
arcsin
(
Set.Iic
x
)
x
↔
x
≠
1
source
theorem
Real
.
differentiableAt_arcsin
{x :
ℝ
}
:
DifferentiableAt
ℝ
arcsin
x
↔
x
≠
-
1
∧
x
≠
1
source
@[simp]
theorem
Real
.
deriv_arcsin
:
deriv
arcsin
=
fun (
x
:
ℝ
) =>
1
/
√
(
1
-
x
^
2
)
source
theorem
Real
.
differentiableOn_arcsin
:
DifferentiableOn
ℝ
arcsin
{
-
1
,
1
}
ᶜ
source
theorem
Real
.
contDiffOn_arcsin
{n :
WithTop
ℕ∞
}
:
ContDiffOn
ℝ
n
arcsin
{
-
1
,
1
}
ᶜ
source
theorem
Real
.
contDiffAt_arcsin_iff
{x :
ℝ
}
{n :
WithTop
ℕ∞
}
:
ContDiffAt
ℝ
n
arcsin
x
↔
n
=
0
∨
x
≠
-
1
∧
x
≠
1
source
theorem
Real
.
hasStrictDerivAt_arccos
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
:
HasStrictDerivAt
arccos
(
-
(
1
/
√
(
1
-
x
^
2
)))
x
source
theorem
Real
.
hasDerivAt_arccos
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
:
HasDerivAt
arccos
(
-
(
1
/
√
(
1
-
x
^
2
)))
x
source
theorem
Real
.
contDiffAt_arccos
{x :
ℝ
}
(h₁ :
x
≠
-
1
)
(h₂ :
x
≠
1
)
{n :
WithTop
ℕ∞
}
:
ContDiffAt
ℝ
n
arccos
x
source
theorem
Real
.
hasDerivWithinAt_arccos_Ici
{x :
ℝ
}
(h :
x
≠
-
1
)
:
HasDerivWithinAt
arccos
(
-
(
1
/
√
(
1
-
x
^
2
)))
(
Set.Ici
x
)
x
source
theorem
Real
.
hasDerivWithinAt_arccos_Iic
{x :
ℝ
}
(h :
x
≠
1
)
:
HasDerivWithinAt
arccos
(
-
(
1
/
√
(
1
-
x
^
2
)))
(
Set.Iic
x
)
x
source
theorem
Real
.
differentiableWithinAt_arccos_Ici
{x :
ℝ
}
:
DifferentiableWithinAt
ℝ
arccos
(
Set.Ici
x
)
x
↔
x
≠
-
1
source
theorem
Real
.
differentiableWithinAt_arccos_Iic
{x :
ℝ
}
:
DifferentiableWithinAt
ℝ
arccos
(
Set.Iic
x
)
x
↔
x
≠
1
source
theorem
Real
.
differentiableAt_arccos
{x :
ℝ
}
:
DifferentiableAt
ℝ
arccos
x
↔
x
≠
-
1
∧
x
≠
1
source
@[simp]
theorem
Real
.
deriv_arccos
:
deriv
arccos
=
fun (
x
:
ℝ
) =>
-
(
1
/
√
(
1
-
x
^
2
))
source
theorem
Real
.
differentiableOn_arccos
:
DifferentiableOn
ℝ
arccos
{
-
1
,
1
}
ᶜ
source
theorem
Real
.
contDiffOn_arccos
{n :
WithTop
ℕ∞
}
:
ContDiffOn
ℝ
n
arccos
{
-
1
,
1
}
ᶜ
source
theorem
Real
.
contDiffAt_arccos_iff
{x :
ℝ
}
{n :
WithTop
ℕ∞
}
:
ContDiffAt
ℝ
n
arccos
x
↔
n
=
0
∨
x
≠
-
1
∧
x
≠
1