Adjunctions involving evaluation #
We show that evaluation of functors have adjoints, given the existence of (co)products.
def
CategoryTheory.evaluationLeftAdjoint
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
:
The left adjoint of evaluation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.evaluationLeftAdjoint_obj_map
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
(d : D)
{X✝ Y✝ : C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.evaluationLeftAdjoint_map_app
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
{x✝ d₂ : D}
(f : x✝ ⟶ d₂)
(x✝¹ : C)
:
@[simp]
theorem
CategoryTheory.evaluationLeftAdjoint_obj_obj
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
(d : D)
(t : C)
:
def
CategoryTheory.evaluationAdjunctionRight
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
:
The adjunction showing that evaluation is a right adjoint.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.evaluationAdjunctionRight_counit_app_app
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
(Y : Functor C D)
(x✝ : C)
:
@[simp]
theorem
CategoryTheory.evaluationAdjunctionRight_unit_app
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
(X : D)
:
instance
CategoryTheory.evaluationIsRightAdjoint
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
(c : C)
:
((evaluation C D).obj c).IsRightAdjoint
theorem
CategoryTheory.NatTrans.mono_iff_mono_app'
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasCoproductsOfShape (a ⟶ b) D]
{F G : Functor C D}
(η : F ⟶ G)
:
See also the file CategoryTheory.Limits.FunctorCategory.EpiMono
for a similar result under a HasPullbacks
assumption.
def
CategoryTheory.evaluationRightAdjoint
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
:
The right adjoint of evaluation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.evaluationRightAdjoint_map_app
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
{X✝ Y✝ : D}
(f : X✝ ⟶ Y✝)
(x✝ : C)
:
@[simp]
theorem
CategoryTheory.evaluationRightAdjoint_obj_obj
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
(d : D)
(t : C)
:
@[simp]
theorem
CategoryTheory.evaluationRightAdjoint_obj_map
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
(d : D)
{X✝ Y✝ : C}
(f : X✝ ⟶ Y✝)
:
def
CategoryTheory.evaluationAdjunctionLeft
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
:
The adjunction showing that evaluation is a left adjoint.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.evaluationAdjunctionLeft_unit_app_app
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
(X : Functor C D)
(x✝ : C)
:
@[simp]
theorem
CategoryTheory.evaluationAdjunctionLeft_counit_app
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
(Y : D)
:
instance
CategoryTheory.evaluationIsLeftAdjoint
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
(c : C)
:
((evaluation C D).obj c).IsLeftAdjoint
theorem
CategoryTheory.NatTrans.epi_iff_epi_app'
{C : Type u₁}
[Category.{v₁, u₁} C]
(D : Type u₂)
[Category.{v₂, u₂} D]
[∀ (a b : C), Limits.HasProductsOfShape (a ⟶ b) D]
{F G : Functor C D}
(η : F ⟶ G)
:
See also the file CategoryTheory.Limits.FunctorCategory.EpiMono
for a similar result under a HasPushouts
assumption.