Documentation

Mathlib.CategoryTheory.Endomorphism

Endomorphisms #

Definition and basic properties of endomorphisms and automorphisms of an object in a category.

For each X : C, we provide CategoryTheory.End X := X ⟶ X with a monoid structure, and CategoryTheory.Aut X := X ≅ X with a group structure.

Endomorphisms of an object in a category. Arguments order in multiplication agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

Equations
instance CategoryTheory.End.mul {C : Type u} [CategoryStruct.{v, u} C] (X : C) :
Mul (End X)

Multiplication of endomorphisms agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

Equations
def CategoryTheory.End.of {C : Type u} [CategoryStruct.{v, u} C] {X : C} (f : X X) :
End X

Assist the typechecker by expressing a morphism X ⟶ X as a term of CategoryTheory.End X.

Equations
def CategoryTheory.End.asHom {C : Type u} [CategoryStruct.{v, u} C] {X : C} (f : End X) :

Assist the typechecker by expressing an endomorphism f : CategoryTheory.End X as a term of X ⟶ X.

Equations
@[simp]
theorem CategoryTheory.End.mul_def {C : Type u} [CategoryStruct.{v, u} C] {X : C} (xs ys : End X) :
instance CategoryTheory.End.monoid {C : Type u} [Category.{v, u} C] {X : C} :

Endomorphisms of an object form a monoid

Equations
theorem CategoryTheory.End.smul_right {C : Type u} [Category.{v, u} C] {X Y : C} {r : End Y} {f : X Y} :
instance CategoryTheory.End.group {C : Type u} [Groupoid C] (X : C) :

In a groupoid, endomorphisms form a group

Equations
def CategoryTheory.Aut {C : Type u} [Category.{v, u} C] (X : C) :

Automorphisms of an object in a category.

The order of arguments in multiplication agrees with Function.comp, not with CategoryTheory.CategoryStruct.comp.

Equations
theorem CategoryTheory.Aut.ext {C : Type u} [Category.{v, u} C] {X : C} {φ₁ φ₂ : Aut X} (h : φ₁.hom = φ₂.hom) :
φ₁ = φ₂
theorem CategoryTheory.Aut.Aut_mul_def {C : Type u} [Category.{v, u} C] (X : C) (f g : Aut X) :

Units in the monoid of endomorphisms of an object are (multiplicatively) equivalent to automorphisms of that object.

Equations
  • One or more equations did not get rendered due to their size.

The inclusion of Aut X to End X as a monoid homomorphism.

Equations
@[simp]
theorem CategoryTheory.Aut.toEnd_apply {C : Type u} [Category.{v, u} C] (X : C) (a✝ : Aut X) :
(toEnd X) a✝ = ((unitsEndEquivAut X).symm a✝)

Isomorphisms induce isomorphisms of the automorphism group

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Functor.mapEnd {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) :
End X →* End (f.obj X)

f.map as a monoid hom between endomorphism monoids.

Equations
@[simp]
theorem CategoryTheory.Functor.mapEnd_apply {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) (a✝ : X X) :
(mapEnd X f) a✝ = f.map a✝
def CategoryTheory.Functor.mapAut {C : Type u} [Category.{v, u} C] (X : C) {D : Type u'} [Category.{v', u'} D] (f : Functor C D) :
Aut X →* Aut (f.obj X)

f.mapIso as a group hom between automorphism groups.

Equations
noncomputable def CategoryTheory.Functor.FullyFaithful.mulEquivEnd {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) :
End X ≃* End (f.obj X)

mulEquivEnd as an isomorphism between endomorphism monoids.

Equations
@[simp]
theorem CategoryTheory.Functor.FullyFaithful.mulEquivEnd_apply {C : Type u} [Category.{v, u} C] {D : Type u'} [Category.{v', u'} D] {f : Functor C D} (hf : f.FullyFaithful) (X : C) (a✝ : X X) :
(hf.mulEquivEnd X) a✝ = f.map a✝
@[simp]

mulEquivAut as an isomorphism between automorphism groups.

Equations