Documentation

Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer

Multi-(co)equalizers #

A multiequalizer is an equalizer of two morphisms between two products. Since both products and equalizers are limits, such an object is again a limit. This file provides the diagram whose limit is indeed such an object. In fact, it is well-known that any limit can be obtained as a multiequalizer. The dual construction (multicoequalizers) is also provided.

Projects #

Prove that a multiequalizer can be identified with an equalizer between products (and analogously for multicoequalizers).

Prove that the limit of any diagram is a multiequalizer (and similarly for colimits).

inductive CategoryTheory.Limits.WalkingMulticospan {L : Type w} {R : Type w'} (fst snd : RL) :
Type (max w w')

The type underlying the multiequalizer diagram.

Instances For
    inductive CategoryTheory.Limits.WalkingMultispan {L : Type w} {R : Type w'} (fst snd : LR) :
    Type (max w w')

    The type underlying the multiecoqualizer diagram.

    Instances For
      inductive CategoryTheory.Limits.WalkingMulticospan.Hom {L : Type w} {R : Type w'} {fst snd : RL} :
      WalkingMulticospan fst sndWalkingMulticospan fst sndType (max w w')

      Morphisms for WalkingMulticospan.

      Instances For
        def CategoryTheory.Limits.WalkingMulticospan.Hom.comp {L : Type w} {R : Type w'} {fst snd : RL} {A B C : WalkingMulticospan fst snd} :
        A.Hom BB.Hom CA.Hom C

        Composition of morphisms for WalkingMulticospan.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Limits.WalkingMulticospan.Hom.id_eq_id {L : Type w} {R : Type w'} {fst snd : RL} (X : WalkingMulticospan fst snd) :
          @[simp]
          theorem CategoryTheory.Limits.WalkingMulticospan.Hom.comp_eq_comp {L : Type w} {R : Type w'} {fst snd : RL} {X Y Z : WalkingMulticospan fst snd} (f : X Y) (g : Y Z) :
          inductive CategoryTheory.Limits.WalkingMultispan.Hom {L : Type w} {R : Type w'} {fst snd : LR} :
          WalkingMultispan fst sndWalkingMultispan fst sndType (max w w')

          Morphisms for WalkingMultispan.

          Instances For
            def CategoryTheory.Limits.WalkingMultispan.Hom.comp {L : Type w} {R : Type w'} {fst snd : LR} {A B C : WalkingMultispan fst snd} :
            A.Hom BB.Hom CA.Hom C

            Composition of morphisms for WalkingMultispan.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Limits.WalkingMultispan.Hom.id_eq_id {L : Type w} {R : Type w'} {fst snd : LR} (X : WalkingMultispan fst snd) :
              @[simp]
              theorem CategoryTheory.Limits.WalkingMultispan.Hom.comp_eq_comp {L : Type w} {R : Type w'} {fst snd : LR} {X Y Z : WalkingMultispan fst snd} (f : X Y) (g : Y Z) :
              structure CategoryTheory.Limits.MulticospanIndex (C : Type u) [Category.{v, u} C] :
              Type (max (max (max u v) (w + 1)) (w' + 1))

              This is a structure encapsulating the data necessary to define a Multicospan.

              Instances For
                structure CategoryTheory.Limits.MultispanIndex (C : Type u) [Category.{v, u} C] :
                Type (max (max (max u v) (w + 1)) (w' + 1))

                This is a structure encapsulating the data necessary to define a Multispan.

                Instances For

                  The multicospan associated to I : MulticospanIndex.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Taking the multiequalizer over the multicospan index is equivalent to taking the equalizer over the two morphisms ∏ᶜ I.left ⇉ ∏ᶜ I.right. This is the diagram of the latter.

                    Equations
                    Instances For

                      The multispan associated to I : MultispanIndex.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[reducible, inline]

                        Taking the multicoequalizer over the multispan index is equivalent to taking the coequalizer over the two morphsims ∐ I.left ⇉ ∐ I.right. This is the diagram of the latter.

                        Equations
                        Instances For
                          @[reducible, inline]
                          abbrev CategoryTheory.Limits.Multifork {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) :
                          Type (max (max (max w w') u) v)

                          A multifork is a cone over a multicospan.

                          Equations
                          Instances For
                            @[reducible, inline]
                            abbrev CategoryTheory.Limits.Multicofork {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) :
                            Type (max (max (max w w') u) v)

                            A multicofork is a cocone over a multispan.

                            Equations
                            Instances For

                              The maps from the cone point of a multifork to the objects on the left.

                              Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Limits.Multifork.hom_comp_ι {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} (K₁ K₂ : Multifork I) (f : K₁ K₂) (j : I.L) :
                                CategoryStruct.comp f.hom (K₂.ι j) = K₁.ι j
                                @[simp]
                                theorem CategoryTheory.Limits.Multifork.hom_comp_ι_assoc {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} (K₁ K₂ : Multifork I) (f : K₁ K₂) (j : I.L) {Z : C} (h : I.left j Z) :
                                def CategoryTheory.Limits.Multifork.ofι {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) (P : C) (ι : (a : I.L) → P I.left a) (w : ∀ (b : I.R), CategoryStruct.comp (ι (I.fstTo b)) (I.fst b) = CategoryStruct.comp (ι (I.sndTo b)) (I.snd b)) :

                                Construct a multifork using a collection ι of morphisms.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Limits.Multifork.ofι_pt {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) (P : C) (ι : (a : I.L) → P I.left a) (w : ∀ (b : I.R), CategoryStruct.comp (ι (I.fstTo b)) (I.fst b) = CategoryStruct.comp (ι (I.sndTo b)) (I.snd b)) :
                                  (ofι I P ι w).pt = P
                                  @[simp]
                                  theorem CategoryTheory.Limits.Multifork.ofι_π_app {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) (P : C) (ι : (a : I.L) → P I.left a) (w : ∀ (b : I.R), CategoryStruct.comp (ι (I.fstTo b)) (I.fst b) = CategoryStruct.comp (ι (I.sndTo b)) (I.snd b)) (x : WalkingMulticospan I.fstTo I.sndTo) :
                                  (ofι I P ι w).π.app x = match x with | WalkingMulticospan.left a => ι a | WalkingMulticospan.right b => CategoryStruct.comp (ι (I.fstTo b)) (I.fst b)
                                  def CategoryTheory.Limits.Multifork.IsLimit.mk {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} (K : Multifork I) (lift : (E : Multifork I) → E.pt K.pt) (fac : ∀ (E : Multifork I) (i : I.L), CategoryStruct.comp (lift E) (K.ι i) = E.ι i) (uniq : ∀ (E : Multifork I) (m : E.pt K.pt), (∀ (i : I.L), CategoryStruct.comp m (K.ι i) = E.ι i)m = lift E) :

                                  This definition provides a convenient way to show that a multifork is a limit.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Limits.Multifork.IsLimit.mk_lift {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} (K : Multifork I) (lift : (E : Multifork I) → E.pt K.pt) (fac : ∀ (E : Multifork I) (i : I.L), CategoryStruct.comp (lift E) (K.ι i) = E.ι i) (uniq : ∀ (E : Multifork I) (m : E.pt K.pt), (∀ (i : I.L), CategoryStruct.comp m (K.ι i) = E.ι i)m = lift E) (E : Multifork I) :
                                    (mk K lift fac uniq).lift E = lift E
                                    theorem CategoryTheory.Limits.Multifork.IsLimit.hom_ext {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} {K : Multifork I} (hK : IsLimit K) {T : C} {f g : T K.pt} (h : ∀ (a : I.L), CategoryStruct.comp f (K.ι a) = CategoryStruct.comp g (K.ι a)) :
                                    f = g
                                    def CategoryTheory.Limits.Multifork.IsLimit.lift {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : I.L) → T I.left a) (hk : ∀ (b : I.R), CategoryStruct.comp (k (I.fstTo b)) (I.fst b) = CategoryStruct.comp (k (I.sndTo b)) (I.snd b)) :

                                    Constructor for morphisms to the point of a limit multifork.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Limits.Multifork.IsLimit.fac {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : I.L) → T I.left a) (hk : ∀ (b : I.R), CategoryStruct.comp (k (I.fstTo b)) (I.fst b) = CategoryStruct.comp (k (I.sndTo b)) (I.snd b)) (a : I.L) :
                                      CategoryStruct.comp (lift hK k hk) (K.ι a) = k a
                                      @[simp]
                                      theorem CategoryTheory.Limits.Multifork.IsLimit.fac_assoc {C : Type u} [Category.{v, u} C] {I : MulticospanIndex C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : I.L) → T I.left a) (hk : ∀ (b : I.R), CategoryStruct.comp (k (I.fstTo b)) (I.fst b) = CategoryStruct.comp (k (I.sndTo b)) (I.snd b)) (a : I.L) {Z : C} (h : I.left a Z) :

                                      Given a multifork, we may obtain a fork over ∏ᶜ I.left ⇉ ∏ᶜ I.right.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        Given a fork over ∏ᶜ I.left ⇉ ∏ᶜ I.right, we may obtain a multifork.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          Multifork.toPiFork as a functor.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            Multifork.ofPiFork as a functor.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              The category of multiforks is equivalent to the category of forks over ∏ᶜ I.left ⇉ ∏ᶜ I.right. It then follows from CategoryTheory.IsLimit.ofPreservesConeTerminal (or reflects) that it preserves and reflects limit cones.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                The maps to the cocone point of a multicofork from the objects on the right.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Limits.Multicofork.π_comp_hom {C : Type u} [Category.{v, u} C] {I : MultispanIndex C} (K₁ K₂ : Multicofork I) (f : K₁ K₂) (b : I.R) :
                                                  CategoryStruct.comp (K₁.π b) f.hom = K₂.π b
                                                  @[simp]
                                                  theorem CategoryTheory.Limits.Multicofork.π_comp_hom_assoc {C : Type u} [Category.{v, u} C] {I : MultispanIndex C} (K₁ K₂ : Multicofork I) (f : K₁ K₂) (b : I.R) {Z : C} (h : K₂.pt Z) :
                                                  def CategoryTheory.Limits.Multicofork.ofπ {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) (P : C) (π : (b : I.R) → I.right b P) (w : ∀ (a : I.L), CategoryStruct.comp (I.fst a) (π (I.fstFrom a)) = CategoryStruct.comp (I.snd a) (π (I.sndFrom a))) :

                                                  Construct a multicofork using a collection π of morphisms.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.Limits.Multicofork.ofπ_pt {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) (P : C) (π : (b : I.R) → I.right b P) (w : ∀ (a : I.L), CategoryStruct.comp (I.fst a) (π (I.fstFrom a)) = CategoryStruct.comp (I.snd a) (π (I.sndFrom a))) :
                                                    (ofπ I P π w).pt = P
                                                    @[simp]
                                                    theorem CategoryTheory.Limits.Multicofork.ofπ_ι_app {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) (P : C) (π : (b : I.R) → I.right b P) (w : ∀ (a : I.L), CategoryStruct.comp (I.fst a) (π (I.fstFrom a)) = CategoryStruct.comp (I.snd a) (π (I.sndFrom a))) (x : WalkingMultispan I.fstFrom I.sndFrom) :
                                                    (ofπ I P π w).ι.app x = match x with | WalkingMultispan.left a => CategoryStruct.comp (I.fst a) (π (I.fstFrom a)) | WalkingMultispan.right a => π a
                                                    def CategoryTheory.Limits.Multicofork.IsColimit.mk {C : Type u} [Category.{v, u} C] {I : MultispanIndex C} (K : Multicofork I) (desc : (E : Multicofork I) → K.pt E.pt) (fac : ∀ (E : Multicofork I) (i : I.R), CategoryStruct.comp (K.π i) (desc E) = E.π i) (uniq : ∀ (E : Multicofork I) (m : K.pt E.pt), (∀ (i : I.R), CategoryStruct.comp (K.π i) m = E.π i)m = desc E) :

                                                    This definition provides a convenient way to show that a multicofork is a colimit.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.Limits.Multicofork.IsColimit.mk_desc {C : Type u} [Category.{v, u} C] {I : MultispanIndex C} (K : Multicofork I) (desc : (E : Multicofork I) → K.pt E.pt) (fac : ∀ (E : Multicofork I) (i : I.R), CategoryStruct.comp (K.π i) (desc E) = E.π i) (uniq : ∀ (E : Multicofork I) (m : K.pt E.pt), (∀ (i : I.R), CategoryStruct.comp (K.π i) m = E.π i)m = desc E) (E : Multicofork I) :
                                                      (mk K desc fac uniq).desc E = desc E

                                                      Given a multicofork, we may obtain a cofork over ∐ I.left ⇉ ∐ I.right.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For

                                                        Given a cofork over ∐ I.left ⇉ ∐ I.right, we may obtain a multicofork.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For

                                                          Multicofork.toSigmaCofork as a functor.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For

                                                            Multicofork.ofSigmaCofork as a functor.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For

                                                              The category of multicoforks is equivalent to the category of coforks over ∐ I.left ⇉ ∐ I.right. It then follows from CategoryTheory.IsColimit.ofPreservesCoconeInitial (or reflects) that it preserves and reflects colimit cocones.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                @[reducible, inline]

                                                                For I : MulticospanIndex C, we say that it has a multiequalizer if the associated multicospan has a limit.

                                                                Equations
                                                                Instances For
                                                                  @[reducible, inline]

                                                                  For I : MultispanIndex C, we say that it has a multicoequalizer if the associated multicospan has a limit.

                                                                  Equations
                                                                  Instances For
                                                                    @[reducible, inline]

                                                                    The canonical map from the multiequalizer to the objects on the left.

                                                                    Equations
                                                                    Instances For
                                                                      @[reducible, inline]

                                                                      The multifork associated to the multiequalizer.

                                                                      Equations
                                                                      Instances For
                                                                        @[reducible, inline]
                                                                        abbrev CategoryTheory.Limits.Multiequalizer.lift {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) [HasMultiequalizer I] (W : C) (k : (a : I.L) → W I.left a) (h : ∀ (b : I.R), CategoryStruct.comp (k (I.fstTo b)) (I.fst b) = CategoryStruct.comp (k (I.sndTo b)) (I.snd b)) :

                                                                        Construct a morphism to the multiequalizer from its universal property.

                                                                        Equations
                                                                        Instances For
                                                                          theorem CategoryTheory.Limits.Multiequalizer.lift_ι {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) [HasMultiequalizer I] (W : C) (k : (a : I.L) → W I.left a) (h : ∀ (b : I.R), CategoryStruct.comp (k (I.fstTo b)) (I.fst b) = CategoryStruct.comp (k (I.sndTo b)) (I.snd b)) (a : I.L) :
                                                                          CategoryStruct.comp (lift I W k h) (ι I a) = k a
                                                                          theorem CategoryTheory.Limits.Multiequalizer.lift_ι_assoc {C : Type u} [Category.{v, u} C] (I : MulticospanIndex C) [HasMultiequalizer I] (W : C) (k : (a : I.L) → W I.left a) (h : ∀ (b : I.R), CategoryStruct.comp (k (I.fstTo b)) (I.fst b) = CategoryStruct.comp (k (I.sndTo b)) (I.snd b)) (a : I.L) {Z : C} (h✝ : I.left a Z) :

                                                                          The multiequalizer is isomorphic to the equalizer of ∏ᶜ I.left ⇉ ∏ᶜ I.right.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For

                                                                            The canonical injection multiequalizer I ⟶ ∏ᶜ I.left.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              @[reducible, inline]

                                                                              The canonical map from the multiequalizer to the objects on the left.

                                                                              Equations
                                                                              Instances For
                                                                                @[reducible, inline]
                                                                                abbrev CategoryTheory.Limits.Multicoequalizer.desc {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) [HasMulticoequalizer I] (W : C) (k : (b : I.R) → I.right b W) (h : ∀ (a : I.L), CategoryStruct.comp (I.fst a) (k (I.fstFrom a)) = CategoryStruct.comp (I.snd a) (k (I.sndFrom a))) :

                                                                                Construct a morphism from the multicoequalizer from its universal property.

                                                                                Equations
                                                                                Instances For
                                                                                  theorem CategoryTheory.Limits.Multicoequalizer.π_desc {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) [HasMulticoequalizer I] (W : C) (k : (b : I.R) → I.right b W) (h : ∀ (a : I.L), CategoryStruct.comp (I.fst a) (k (I.fstFrom a)) = CategoryStruct.comp (I.snd a) (k (I.sndFrom a))) (b : I.R) :
                                                                                  CategoryStruct.comp (π I b) (desc I W k h) = k b
                                                                                  theorem CategoryTheory.Limits.Multicoequalizer.π_desc_assoc {C : Type u} [Category.{v, u} C] (I : MultispanIndex C) [HasMulticoequalizer I] (W : C) (k : (b : I.R) → I.right b W) (h : ∀ (a : I.L), CategoryStruct.comp (I.fst a) (k (I.fstFrom a)) = CategoryStruct.comp (I.snd a) (k (I.sndFrom a))) (b : I.R) {Z : C} (h✝ : W Z) :

                                                                                  The multicoequalizer is isomorphic to the coequalizer of ∐ I.left ⇉ ∐ I.right.

                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  Instances For

                                                                                    The canonical projection ∐ I.rightmulticoequalizer I.

                                                                                    Equations
                                                                                    • One or more equations did not get rendered due to their size.
                                                                                    Instances For