Documentation

Mathlib.CategoryTheory.Localization.Bousfield

Bousfield localization #

Given a predicate P : C → Prop on the objects of a category C, we define Localization.LeftBousfield.W P : MorphismProperty C as the class of morphisms f : X ⟶ Y such that for any Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z).

(This construction is part of left Bousfield localization in the context of model categories.)

When G ⊣ F is an adjunction with F : C ⥤ D fully faithful, then G : D ⥤ C is a localization functor for the class W (· ∈ Set.range F.obj), which then identifies to the inverse image by G of the class of isomorphisms in C.

References #

Given a predicate P : C → Prop, this is the class of morphisms f : X ⟶ Y such that for all Z : C such that P Z, the precomposition with f induces a bijection (Y ⟶ Z) ≃ (X ⟶ Z).

Equations
Instances For
    noncomputable def CategoryTheory.Localization.LeftBousfield.W.homEquiv {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {P : CProp} {X : C} {Y : C} {f : X Y} (hf : CategoryTheory.Localization.LeftBousfield.W P f) (Z : C) (hZ : P Z) :
    (Y Z) (X Z)

    The bijection (Y ⟶ Z) ≃ (X ⟶ Z) induced by f : X ⟶ Y when LeftBousfield.W P f and P Z.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Localization.LeftBousfield.W.homEquiv_apply {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {P : CProp} {X : C} {Y : C} {f : X Y} (hf : CategoryTheory.Localization.LeftBousfield.W P f) (Z : C) (hZ : P Z) (g : Y Z) :
      (hf.homEquiv Z hZ) g = CategoryTheory.CategoryStruct.comp f g