Documentation

Mathlib.CategoryTheory.Monad.Monadicity

Monadicity theorems #

We prove monadicity theorems which can establish a given functor is monadic. In particular, we show three versions of Beck's monadicity theorem, and the reflexive (crude) monadicity theorem:

G is a monadic right adjoint if it has a left adjoint, and:

This file has been adapted to Mathlib.CategoryTheory.Monad.Comonadicity. Please try to keep them in sync.

Tags #

Beck, monadicity, descent

The "main pair" for an algebra (A, α) is the pair of morphisms (F α, ε_FA). It is always a reflexive pair, and will be used to construct the left adjoint to the comparison functor and show it is an equivalence.

instance CategoryTheory.Monad.MonadicityInternal.main_pair_G_split {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (A : adj.toMonad.Algebra) :
G.IsSplitPair (F.map A.a) (adj.counit.app (F.obj A.A))

The "main pair" for an algebra (A, α) is the pair of morphisms (F α, ε_FA). It is always a G-split pair, and will be used to construct the left adjoint to the comparison functor and show it is an equivalence.

The object function for the left adjoint to the comparison functor.

Equations

We have a bijection of homsets which will be used to construct the left adjoint to the comparison functor.

Equations
  • One or more equations did not get rendered due to their size.

Construct the adjunction to the comparison functor.

Equations
  • One or more equations did not get rendered due to their size.

Provided we have the appropriate coequalizers, we have an adjunction to the comparison functor.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Monad.MonadicityInternal.comparisonAdjunction_counit {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) [∀ (A : adj.toMonad.Algebra), Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
(comparisonAdjunction adj).counit = { app := fun (Y : D) => (Limits.Cofork.IsColimit.homIso (Limits.colimit.isColimit (Limits.parallelPair (F.map (G.map (adj.counit.app Y))) (adj.counit.app (F.obj (G.obj Y))))) Y).symm (adj.homEquiv (G.obj Y) Y).symm (CategoryStruct.id (G.obj Y)), , naturality := }
def CategoryTheory.Monad.MonadicityInternal.unitCofork {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
Limits.Cofork (G.map (F.map A.a)) (G.map (adj.counit.app (F.obj A.A)))

This is a cofork which is helpful for establishing monadicity: the morphism from the Beck coequalizer to this cofork is the unit for the adjunction on the comparison functor.

Equations
@[simp]
theorem CategoryTheory.Monad.MonadicityInternal.unitCofork_pt {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} {adj : F G} (A : adj.toMonad.Algebra) [Limits.HasCoequalizer (F.map A.a) (adj.counit.app (F.obj A.A))] :
(unitCofork A).pt = G.obj (Limits.coequalizer (F.map A.a) (adj.counit.app (F.obj A.A)))
@[simp]
def CategoryTheory.Monad.MonadicityInternal.counitCofork {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (B : D) :
Limits.Cofork (F.map (G.map (adj.counit.app B))) (adj.counit.app (F.obj (G.obj B)))

The cofork which describes the counit of the adjunction: the morphism from the coequalizer of this pair to this morphism is the counit.

Equations
@[simp]
theorem CategoryTheory.Monad.MonadicityInternal.counitCofork_pt {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] {G : Functor D C} {F : Functor C D} (adj : F G) (B : D) :
(counitCofork adj B).pt = B

The counit cofork is a colimit provided G reflects it.

Equations
  • One or more equations did not get rendered due to their size.

If G is monadic, it creates colimits of G-split pairs. This is the "boring" direction of Beck's monadicity theorem, the converse is given in monadicOfCreatesGSplitCoequalizers.

Equations
Instances

    To show G is a monadic right adjoint, we can show it preserves and reflects G-split coequalizers, and D has them.

    Equations
    class CategoryTheory.Monad.CreatesColimitOfIsSplitPair {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₁, u₂} D] (G : Functor D C) :
    Type (max (max u₁ u₂) v₁)
    Instances
      Equations
      • One or more equations did not get rendered due to their size.

      Beck's monadicity theorem: if G has a left adjoint and creates coequalizers of G-split pairs, then it is monadic. This is the converse of createsGSplitCoequalizersOfMonadic.

      Equations

      An alternate version of Beck's monadicity theorem: if G reflects isomorphisms, preserves coequalizers of G-split pairs and C has coequalizers of G-split pairs, then it is monadic.

      Equations

      Reflexive (crude) monadicity theorem. If G has a right adjoint, D has and G preserves reflexive coequalizers and G reflects isomorphisms, then G is monadic.

      Equations