lim : (J ⥤ C) ⥤ C
is lax monoidal when C
is a monoidal category. #
When C
is a monoidal category, the functorial association F ↦ limit F
is lax monoidal,
i.e. there are morphisms
limLax.ε : (𝟙_ C) → limit (𝟙_ (J ⥤ C))
limLax.μ : limit F ⊗ limit G ⟶ limit (F ⊗ G)
satisfying the laws of a lax monoidal functor.
TODO #
Now that we have oplax monoidal functors, assemble Limits.colim
into an oplax monoidal functor.
instance
CategoryTheory.Limits.limitFunctorial
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
:
CategoryTheory.Functorial fun (F : CategoryTheory.Functor J C) => CategoryTheory.Limits.limit F
Equations
- CategoryTheory.Limits.limitFunctorial = { map' := fun {X Y : CategoryTheory.Functor J C} => CategoryTheory.Limits.lim.map, map_id' := ⋯, map_comp' := ⋯ }
@[simp]
theorem
CategoryTheory.Limits.limitFunctorial_map
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
{F : CategoryTheory.Functor J C}
{G : CategoryTheory.Functor J C}
(α : F ⟶ G)
:
CategoryTheory.map (fun (F : CategoryTheory.Functor J C) => CategoryTheory.Limits.limit F) α = CategoryTheory.Limits.lim.map α
instance
CategoryTheory.Limits.limitLaxMonoidal
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
:
CategoryTheory.LaxMonoidal fun (F : CategoryTheory.Functor J C) => CategoryTheory.Limits.limit F
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.Limits.limitLaxMonoidal_μ
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
(F : CategoryTheory.Functor J C)
(G : CategoryTheory.Functor J C)
:
CategoryTheory.LaxMonoidal.μ F G = CategoryTheory.Limits.limit.lift (CategoryTheory.MonoidalCategory.tensorObj F G)
{ pt := CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.Limits.limit F) (CategoryTheory.Limits.limit G),
π :=
{
app := fun (j : J) =>
CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.Limits.limit.π F j)
(CategoryTheory.Limits.limit.π G j),
naturality := ⋯ } }
@[simp]
theorem
CategoryTheory.Limits.limitLaxMonoidal_ε
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
:
CategoryTheory.LaxMonoidal.ε = CategoryTheory.Limits.limit.lift ((CategoryTheory.Functor.const J).obj (𝟙_ C))
{ pt := 𝟙_ C,
π :=
{ app := fun (x : J) => CategoryTheory.CategoryStruct.id (((CategoryTheory.Functor.const J).obj (𝟙_ C)).obj x),
naturality := ⋯ } }
def
CategoryTheory.Limits.limLax
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
:
The limit functor F ↦ limit F
bundled as a lax monoidal functor.
Equations
- CategoryTheory.Limits.limLax = CategoryTheory.LaxMonoidalFunctor.of fun (F : CategoryTheory.Functor J C) => CategoryTheory.Limits.limit F
Instances For
@[simp]
theorem
CategoryTheory.Limits.limLax_obj
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
(F : CategoryTheory.Functor J C)
:
CategoryTheory.Limits.limLax.obj F = CategoryTheory.Limits.limit F
theorem
CategoryTheory.Limits.limLax_obj'
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
(F : CategoryTheory.Functor J C)
:
CategoryTheory.Limits.limLax.obj F = CategoryTheory.Limits.lim.obj F
@[simp]
theorem
CategoryTheory.Limits.limLax_map
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
{F : CategoryTheory.Functor J C}
{G : CategoryTheory.Functor J C}
(α : F ⟶ G)
:
CategoryTheory.Limits.limLax.map α = CategoryTheory.Limits.lim.map α
@[simp]
theorem
CategoryTheory.Limits.limLax_ε
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
:
CategoryTheory.Limits.limLax.ε = CategoryTheory.Limits.limit.lift ((CategoryTheory.Functor.const J).obj (𝟙_ C))
{ pt := 𝟙_ C,
π :=
{ app := fun (x : J) => CategoryTheory.CategoryStruct.id (((CategoryTheory.Functor.const J).obj (𝟙_ C)).obj x),
naturality := ⋯ } }
@[simp]
theorem
CategoryTheory.Limits.limLax_μ
{J : Type w}
[CategoryTheory.SmallCategory J]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.MonoidalCategory C]
(F : CategoryTheory.Functor J C)
(G : CategoryTheory.Functor J C)
:
CategoryTheory.Limits.limLax.μ F G = CategoryTheory.Limits.limit.lift (CategoryTheory.MonoidalCategory.tensorObj F G)
{ pt := CategoryTheory.MonoidalCategory.tensorObj (CategoryTheory.Limits.limit F) (CategoryTheory.Limits.limit G),
π :=
{
app := fun (j : J) =>
CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.Limits.limit.π F j)
(CategoryTheory.Limits.limit.π G j),
naturality := ⋯ } }