Documentation

Mathlib.CategoryTheory.ObjectProperty.ClosedUnderIsomorphisms

Properties of objects which are closed under isomorphisms #

Given a category C and P : ObjectProperty C (i.e. P : C → Prop), this file introduces the type class P.IsClosedUnderIsomorphisms.

A predicate C → Prop on the objects of a category is closed under isomorphisms if whenever P X, then all the objects Y that are isomorphic to X also satisfy P Y.

  • of_iso {X Y : C} : ∀ (x : X Y), P XP Y
Instances
    theorem CategoryTheory.ObjectProperty.prop_of_iso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (e : X Y) (hX : P X) :
    P Y
    theorem CategoryTheory.ObjectProperty.prop_of_isIso {C : Type u} [Category.{v, u} C] (P : ObjectProperty C) [P.IsClosedUnderIsomorphisms] {X Y : C} (f : X Y) [IsIso f] (hX : P X) :
    P Y

    The closure by isomorphisms of a predicate on objects in a category.

    Equations
    Instances For
      theorem CategoryTheory.ObjectProperty.prop_isoClosure {C : Type u} [Category.{v, u} C] {P : ObjectProperty C} {X Y : C} (h : P X) (e : X Y) [IsIso e] :