Documentation

Mathlib.CategoryTheory.Opposites

Opposite categories #

We provide a category instance on Cᵒᵖ. The morphisms X ⟶ Y are defined to be the morphisms unop Y ⟶ unop X in C.

Here Cᵒᵖ is an irreducible typeclass synonym for C (it is the same one used in the algebra library).

We also provide various mechanisms for constructing opposite morphisms, functors, and natural transformations.

Unfortunately, because we do not have a definitional equality op (op X) = X, there are quite a few variations that are needed in practice.

theorem Quiver.Hom.op_inj {C : Type u₁} [Quiver C] {X Y : C} :
@[simp]
theorem Quiver.Hom.unop_op {C : Type u₁} [Quiver C] {X Y : C} (f : X Y) :
@[simp]
theorem Quiver.Hom.unop_op' {C : Type u₁} [Quiver C] {X Y : Cᵒᵖ} {x : Opposite.unop Y Opposite.unop X} :
@[simp]
theorem Quiver.Hom.op_unop {C : Type u₁} [Quiver C] {X Y : Cᵒᵖ} (f : X Y) :
@[simp]
theorem Quiver.Hom.unop_mk {C : Type u₁} [Quiver C] {X Y : Cᵒᵖ} (f : X Y) :
@[simp]
theorem CategoryTheory.op_comp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : Y Z} :

The functor from the double-opposite of a category to the underlying category.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.unopUnop_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : Cᵒᵖᵒᵖ} (f : X✝ Y✝) :

    The functor from a category to its double-opposite.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.opOp_map (C : Type u₁) [Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) :
      (opOp C).map f = f.op.op

      The double opposite category is equivalent to the original.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        instance CategoryTheory.isIso_op {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsIso f] :

        If f is an isomorphism, so is f.op

        theorem CategoryTheory.isIso_of_op {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsIso f.op] :

        If f.op is an isomorphism f must be too. (This cannot be an instance as it would immediately loop!)

        theorem CategoryTheory.isIso_op_iff {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
        @[simp]
        theorem CategoryTheory.op_inv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsIso f] :
        (inv f).op = inv f.op
        @[simp]
        theorem CategoryTheory.unop_inv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} (f : X Y) [IsIso f] :

        The opposite of a functor, i.e. considering a functor F : C ⥤ D as a functor Cᵒᵖ ⥤ Dᵒᵖ. In informal mathematics no distinction is made between these.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.op_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C D) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) :
          F.op.map f = (F.map f.unop).op

          Given a functor F : Cᵒᵖ ⥤ Dᵒᵖ we can take the "unopposite" functor F : C ⥤ D. In informal mathematics no distinction is made between these.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Functor.unop_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor Cᵒᵖ Dᵒᵖ) {X✝ Y✝ : C} (f : X✝ Y✝) :
            F.unop.map f = (F.map f.op).unop

            The isomorphism between F.op.unop and F.

            Equations
            Instances For

              The isomorphism between F.unop.op and F.

              Equations
              Instances For

                Taking the opposite of a functor is functorial.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Functor.opHom_map_app (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : (Functor C D)ᵒᵖ} (α : X✝ Y✝) (X : Cᵒᵖ) :
                  ((opHom C D).map α).app X = (α.unop.app (Opposite.unop X)).op

                  Take the "unopposite" of a functor is functorial.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Functor.opInv_map (C : Type u₁) [Category.{v₁, u₁} C] (D : Type u₂) [Category.{v₂, u₂} D] {X✝ Y✝ : Functor Cᵒᵖ Dᵒᵖ} (α : X✝ Y✝) :
                    (opInv C D).map α = Quiver.Hom.op { app := fun (X : C) => (α.app (Opposite.op X)).unop, naturality := }

                    Another variant of the opposite of functor, turning a functor C ⥤ Dᵒᵖ into a functor Cᵒᵖ ⥤ D. In informal mathematics no distinction is made.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Functor.leftOp_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor C Dᵒᵖ) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) :

                      Another variant of the opposite of functor, turning a functor Cᵒᵖ ⥤ D into a functor C ⥤ Dᵒᵖ. In informal mathematics no distinction is made.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Functor.rightOp_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F : Functor Cᵒᵖ D) {X✝ Y✝ : C} (f : X✝ Y✝) :

                        If F is faithful then the right_op of F is also faithful.

                        If F is faithful then the left_op of F is also faithful.

                        Whenever possible, it is advisable to use the isomorphism rightOpLeftOpIso instead of this equality of functors.

                        def CategoryTheory.NatTrans.op {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (α : F G) :

                        The opposite of a natural transformation.

                        Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.NatTrans.op_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (α : F G) (X : Cᵒᵖ) :

                          The "unopposite" of a natural transformation.

                          Equations
                          Instances For
                            @[simp]

                            Given a natural transformation α : F.op ⟶ G.op, we can take the "unopposite" of each component obtaining a natural transformation G ⟶ F.

                            Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.NatTrans.removeOp_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (α : F.op G.op) (X : C) :

                              Given a natural transformation α : F.unop ⟶ G.unop, we can take the opposite of each component obtaining a natural transformation G ⟶ F.

                              Equations
                              Instances For

                                Given a natural transformation α : F ⟶ G, for F G : C ⥤ Dᵒᵖ, taking unop of each component gives a natural transformation G.leftOp ⟶ F.leftOp.

                                Equations
                                Instances For

                                  Given a natural transformation α : F.leftOp ⟶ G.leftOp, for F G : C ⥤ Dᵒᵖ, taking op of each component gives a natural transformation G ⟶ F.

                                  Equations
                                  Instances For

                                    Given a natural transformation α : F ⟶ G, for F G : Cᵒᵖ ⥤ D, taking op of each component gives a natural transformation G.rightOp ⟶ F.rightOp.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.NatTrans.rightOp_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor Cᵒᵖ D} (α : F G) (x✝ : C) :
                                      (NatTrans.rightOp α).app x✝ = (α.app (Opposite.op x✝)).op

                                      Given a natural transformation α : F.rightOp ⟶ G.rightOp, for F G : Cᵒᵖ ⥤ D, taking unop of each component gives a natural transformation G ⟶ F.

                                      Equations
                                      Instances For

                                        The opposite isomorphism.

                                        Equations
                                        • α.op = { hom := α.hom.op, inv := α.inv.op, hom_inv_id := , inv_hom_id := }
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Iso.op_hom {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (α : X Y) :
                                          @[simp]
                                          theorem CategoryTheory.Iso.op_inv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (α : X Y) :

                                          The isomorphism obtained from an isomorphism in the opposite category.

                                          Equations
                                          Instances For
                                            @[simp]
                                            @[simp]
                                            @[simp]
                                            theorem CategoryTheory.Iso.unop_op {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} (f : X Y) :
                                            @[simp]
                                            theorem CategoryTheory.Iso.op_unop {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
                                            @[simp]
                                            @[simp]
                                            def CategoryTheory.NatIso.op {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F G : Functor C D} (α : F G) :

                                            The natural isomorphism between opposite functors G.op ≅ F.op induced by a natural isomorphism between the original functors F ≅ G.

                                            Equations
                                            Instances For
                                              @[simp]
                                              @[simp]

                                              The natural isomorphism between functors G ≅ F induced by a natural isomorphism between the opposite functors F.op ≅ G.op.

                                              Equations
                                              Instances For

                                                The natural isomorphism between functors G.unop ≅ F.unop induced by a natural isomorphism between the original functors F ≅ G.

                                                Equations
                                                Instances For

                                                  An equivalence between categories gives an equivalence between the opposite categories.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    An equivalence between opposite categories gives an equivalence between the original categories.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      The equivalence between arrows of the form A ⟶ B and B.unop ⟶ A.unop. Useful for building adjunctions. Note that this (definitionally) gives variants

                                                      def opEquiv' (A : C) (B : Cᵒᵖ) : (Opposite.op A ⟶ B) ≃ (B.unop ⟶ A) :=
                                                        opEquiv _ _
                                                      
                                                      def opEquiv'' (A : Cᵒᵖ) (B : C) : (A ⟶ Opposite.op B) ≃ (B ⟶ A.unop) :=
                                                        opEquiv _ _
                                                      
                                                      def opEquiv''' (A B : C) : (Opposite.op A ⟶ Opposite.op B) ≃ (B ⟶ A) :=
                                                        opEquiv _ _
                                                      
                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.opEquiv_apply {C : Type u₁} [Category.{v₁, u₁} C] (A B : Cᵒᵖ) (f : A B) :
                                                        (opEquiv A B) f = f.unop

                                                        The equivalence between isomorphisms of the form A ≅ B and B.unop ≅ A.unop.

                                                        Note this is definitionally the same as the other three variants:

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.isoOpEquiv_apply {C : Type u₁} [Category.{v₁, u₁} C] (A B : Cᵒᵖ) (f : A B) :
                                                          (isoOpEquiv A B) f = f.unop

                                                          The equivalence of functor categories induced by op and unop.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For

                                                            The equivalence of functor categories induced by leftOp and rightOp.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For