Corners #
This file defines corners, namely triples of the form (x, y), (x, y + d), (x + d, y)
, and the
property of being corner-free.
References #
- [Yaël Dillies, Bhavik Mehta, Formalising Szemerédi’s Regularity Lemma in Lean][srl_itp]
- Wikipedia, Corners theorem
A corner of a set A
in an abelian group is a triple of points of the form
(x, y), (x + d, y), (x, y + d)
. It is nontrivial if d ≠ 0
.
Here we define it as triples (x₁, y₁), (x₂, y₁), (x₁, y₂)
where x₁ + y₂ = x₂ + y₁
in order for
the definition to make sense in commutative monoids, the motivating example being ℕ
.
Instances For
A corner-free set in an abelian group is a set containing no non-trivial corner.
Equations
- IsCornerFree A = ∀ ⦃x₁ y₁ x₂ y₂ : G⦄, IsCorner A x₁ y₁ x₂ y₂ → x₁ = x₂
Instances For
theorem
IsCornerFree.mono
{G : Type u_1}
[AddCommMonoid G]
{A B : Set (G × G)}
(hAB : A ⊆ B)
(hB : IsCornerFree B)
:
@[simp]
@[simp]
theorem
Set.Subsingleton.isCornerFree
{G : Type u_1}
[AddCommMonoid G]
{A : Set (G × G)}
(hA : A.Subsingleton)
:
theorem
IsCorner.image
{G : Type u_1}
{H : Type u_2}
[AddCommMonoid G]
[AddCommMonoid H]
{A : Set (G × G)}
{s : Set G}
{t : Set H}
{f : G → H}
{x₁ y₁ x₂ y₂ : G}
(hf : IsAddFreimanHom 2 s t f)
(hAs : A ⊆ s ×ˢ s)
(hA : IsCorner A x₁ y₁ x₂ y₂)
:
IsCorner (Prod.map f f '' A) (f x₁) (f y₁) (f x₂) (f y₂)
Corners are preserved under 2
-Freiman homomorphisms. -
theorem
IsCornerFree.of_image
{G : Type u_1}
{H : Type u_2}
[AddCommMonoid G]
[AddCommMonoid H]
{A : Set (G × G)}
{s : Set G}
{t : Set H}
{f : G → H}
(hf : IsAddFreimanHom 2 s t f)
(hf' : Set.InjOn f s)
(hAs : A ⊆ s ×ˢ s)
(hA : IsCornerFree (Prod.map f f '' A))
:
Corners are preserved under 2
-Freiman homomorphisms. -
theorem
isCornerFree_image
{G : Type u_1}
{H : Type u_2}
[AddCommMonoid G]
[AddCommMonoid H]
{A : Set (G × G)}
{s : Set G}
{t : Set H}
{f : G → H}
(hf : IsAddFreimanIso 2 s t f)
(hAs : A ⊆ s ×ˢ s)
:
theorem
IsCorner.of_image
{G : Type u_1}
{H : Type u_2}
[AddCommMonoid G]
[AddCommMonoid H]
{A : Set (G × G)}
{s : Set G}
{t : Set H}
{f : G → H}
{x₁ y₁ x₂ y₂ : G}
(hf : IsAddFreimanIso 2 s t f)
(hAs : A ⊆ s ×ˢ s)
(hx₁ : x₁ ∈ s)
(hy₁ : y₁ ∈ s)
(hx₂ : x₂ ∈ s)
(hy₂ : y₂ ∈ s)
:
IsCorner (Prod.map f f '' A) (f x₁) (f y₁) (f x₂) (f y₂) → IsCorner A x₁ y₁ x₂ y₂
Alias of the forward direction of isCorner_image
.
theorem
IsCornerFree.image
{G : Type u_1}
{H : Type u_2}
[AddCommMonoid G]
[AddCommMonoid H]
{A : Set (G × G)}
{s : Set G}
{t : Set H}
{f : G → H}
(hf : IsAddFreimanIso 2 s t f)
(hAs : A ⊆ s ×ˢ s)
:
Alias of the reverse direction of isCornerFree_image
.