Documentation

Mathlib.Combinatorics.SimpleGraph.Maps

Maps between graphs #

This file defines two functions and three structures relating graphs. The structures directly correspond to the classification of functions as injective, surjective and bijective, and have corresponding notation.

Main definitions #

Note that a graph embedding is a stronger notion than an injective graph homomorphism, since its image is an induced subgraph.

Implementation notes #

Morphisms of graphs are abbreviations for RelHom, RelEmbedding and RelIso. To make use of pre-existing simp lemmas, definitions involving morphisms are abbreviations as well.

Map and comap #

def SimpleGraph.map {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) :

Given an injective function, there is a covariant induced map on graphs by pushing forward the adjacency relation.

This is injective (see SimpleGraph.map_injective).

Equations
instance SimpleGraph.instDecidableMapAdj {V : Type u_1} {W : Type u_2} (G : SimpleGraph V) {f : V W} {a b : W} [Decidable (Relation.Map G.Adj (⇑f) (⇑f) a b)] :
Equations
@[simp]
theorem SimpleGraph.map_adj {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) (u v : W) :
(SimpleGraph.map f G).Adj u v ∃ (u' : V) (v' : V), G.Adj u' v' f u' = u f v' = v
theorem SimpleGraph.map_adj_apply {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {f : V W} {a b : V} :
(SimpleGraph.map f G).Adj (f a) (f b) G.Adj a b
theorem SimpleGraph.map_monotone {V : Type u_1} {W : Type u_2} (f : V W) :
@[simp]
theorem SimpleGraph.map_map {V : Type u_1} {W : Type u_2} {X : Type u_3} (G : SimpleGraph V) (f : V W) (g : W X) :
def SimpleGraph.comap {V : Type u_1} {W : Type u_2} (f : VW) (G : SimpleGraph W) :

Given a function, there is a contravariant induced map on graphs by pulling back the adjacency relation. This is one of the ways of creating induced graphs. See SimpleGraph.induce for a wrapper.

This is surjective when f is injective (see SimpleGraph.comap_surjective).

Equations
@[simp]
theorem SimpleGraph.comap_adj {V : Type u_1} {W : Type u_2} {u v : V} {G : SimpleGraph W} {f : VW} :
(SimpleGraph.comap f G).Adj u v G.Adj (f u) (f v)
@[simp]
@[simp]
theorem SimpleGraph.comap_comap {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph X} (f : VW) (g : WX) :
instance SimpleGraph.instDecidableComapAdj {V : Type u_1} {W : Type u_2} (f : VW) (G : SimpleGraph W) [DecidableRel G.Adj] :
Equations
theorem SimpleGraph.comap_monotone {V : Type u_1} {W : Type u_2} (f : V W) :
@[simp]
theorem SimpleGraph.comap_map_eq {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) :
theorem SimpleGraph.map_le_iff_le_comap {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) (G' : SimpleGraph W) :
theorem SimpleGraph.map_comap_le {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph W) :
theorem SimpleGraph.le_comap_of_subsingleton {V : Type u_1} {W : Type u_2} (G : SimpleGraph V) (G' : SimpleGraph W) (f : VW) [Subsingleton V] :
theorem SimpleGraph.map_le_of_subsingleton {V : Type u_1} {W : Type u_2} (G : SimpleGraph V) (G' : SimpleGraph W) (f : V W) [Subsingleton V] :
@[reducible, inline]
abbrev SimpleGraph.completeMultipartiteGraph {ι : Type u_4} (V : ιType u_5) :
SimpleGraph ((i : ι) × V i)

Given a family of vertex types indexed by ι, pulling back from ⊤ : SimpleGraph ι yields the complete multipartite graph on the family. Two vertices are adjacent if and only if their indices are not equal.

Equations
def Equiv.simpleGraph {V : Type u_1} {W : Type u_2} (e : V W) :

Equivalent types have equivalent simple graphs.

Equations
@[simp]
theorem Equiv.simpleGraph_apply {V : Type u_1} {W : Type u_2} (e : V W) (G : SimpleGraph V) :
@[simp]
theorem Equiv.simpleGraph_trans {V : Type u_1} {W : Type u_2} {X : Type u_3} (e₁ : V W) (e₂ : W X) :
@[simp]
theorem Equiv.symm_simpleGraph {V : Type u_1} {W : Type u_2} (e : V W) :

Induced graphs #

@[reducible, inline]
abbrev SimpleGraph.induce {V : Type u_1} (s : Set V) (G : SimpleGraph V) :

Restrict a graph to the vertices in the set s, deleting all edges incident to vertices outside the set. This is a wrapper around SimpleGraph.comap.

Equations
@[simp]
theorem SimpleGraph.induce_singleton_eq_top {V : Type u_1} (G : SimpleGraph V) (v : V) :
@[reducible, inline]
abbrev SimpleGraph.spanningCoe {V : Type u_1} {s : Set V} (G : SimpleGraph s) :

Given a graph on a set of vertices, we can make it be a SimpleGraph V by adding in the remaining vertices without adding in any additional edges. This is a wrapper around SimpleGraph.map.

Equations
theorem SimpleGraph.induce_spanningCoe {V : Type u_1} {s : Set V} {G : SimpleGraph s} :

Homomorphisms, embeddings and isomorphisms #

@[reducible, inline]
abbrev SimpleGraph.Hom {V : Type u_1} {W : Type u_2} (G : SimpleGraph V) (G' : SimpleGraph W) :
Type (max u_1 u_2)

A graph homomorphism is a map on vertex sets that respects adjacency relations.

The notation G →g G' represents the type of graph homomorphisms.

Equations
@[reducible, inline]
abbrev SimpleGraph.Embedding {V : Type u_1} {W : Type u_2} (G : SimpleGraph V) (G' : SimpleGraph W) :
Type (max u_1 u_2)

A graph embedding is an embedding f such that for vertices v w : V, G'.Adj (f v) (f w) ↔ G.Adj v w. Its image is an induced subgraph of G'.

The notation G ↪g G' represents the type of graph embeddings.

Equations
@[reducible, inline]
abbrev SimpleGraph.Iso {V : Type u_1} {W : Type u_2} (G : SimpleGraph V) (G' : SimpleGraph W) :
Type (max u_1 u_2)

A graph isomorphism is a bijective map on vertex sets that respects adjacency relations.

The notation G ≃g G' represents the type of graph isomorphisms.

Equations

A graph homomorphism is a map on vertex sets that respects adjacency relations.

The notation G →g G' represents the type of graph homomorphisms.

Equations

A graph embedding is an embedding f such that for vertices v w : V, G'.Adj (f v) (f w) ↔ G.Adj v w. Its image is an induced subgraph of G'.

The notation G ↪g G' represents the type of graph embeddings.

Equations

A graph isomorphism is a bijective map on vertex sets that respects adjacency relations.

The notation G ≃g G' represents the type of graph isomorphisms.

Equations
@[reducible, inline]
abbrev SimpleGraph.Hom.id {V : Type u_1} {G : SimpleGraph V} :

The identity homomorphism from a graph to itself.

Equations
@[simp]
instance SimpleGraph.Hom.instUniqueOfIsEmpty {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {H : SimpleGraph W} [IsEmpty V] :
Equations
instance SimpleGraph.Hom.instFinite {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {H : SimpleGraph W} [Finite V] [Finite W] :
theorem SimpleGraph.Hom.map_adj {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {v w : V} (h : G.Adj v w) :
G'.Adj (f v) (f w)
theorem SimpleGraph.Hom.map_mem_edgeSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {e : Sym2 V} (h : e G.edgeSet) :
Sym2.map (⇑f) e G'.edgeSet
theorem SimpleGraph.Hom.apply_mem_neighborSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') {v w : V} (h : w G.neighborSet v) :
def SimpleGraph.Hom.mapEdgeSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') (e : G.edgeSet) :
G'.edgeSet

The map between edge sets induced by a homomorphism. The underlying map on edges is given by Sym2.map.

Equations
@[simp]
theorem SimpleGraph.Hom.mapEdgeSet_coe {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') (e : G.edgeSet) :
def SimpleGraph.Hom.mapNeighborSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') (v : V) (w : (G.neighborSet v)) :
(G'.neighborSet (f v))

The map between neighbor sets induced by a homomorphism.

Equations
@[simp]
theorem SimpleGraph.Hom.mapNeighborSet_coe {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') (v : V) (w : (G.neighborSet v)) :
def SimpleGraph.Hom.mapDart {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') (d : G.Dart) :
G'.Dart

The map between darts induced by a homomorphism.

Equations
@[simp]
theorem SimpleGraph.Hom.mapDart_apply {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G →g G') (d : G.Dart) :
f.mapDart d = { toProd := Prod.map (⇑f) (⇑f) d.toProd, adj := }
def SimpleGraph.Hom.mapSpanningSubgraphs {V : Type u_1} {G G' : SimpleGraph V} (h : G G') :

The induced map for spanning subgraphs, which is the identity on vertices.

Equations
@[simp]
theorem SimpleGraph.Hom.mapSpanningSubgraphs_apply {V : Type u_1} {G G' : SimpleGraph V} (h : G G') (x : V) :
theorem SimpleGraph.Hom.injective_of_top_hom {V : Type u_1} {W : Type u_2} {G' : SimpleGraph W} (f : →g G') :

Every graph homomorphism from a complete graph is injective.

def SimpleGraph.Hom.comap {V : Type u_1} {W : Type u_2} (f : VW) (G : SimpleGraph W) :

There is a homomorphism to a graph from a comapped graph. When the function is injective, this is an embedding (see SimpleGraph.Embedding.comap).

Equations
@[simp]
theorem SimpleGraph.Hom.comap_apply {V : Type u_1} {W : Type u_2} (f : VW) (G : SimpleGraph W) (a✝ : V) :
(Hom.comap f G) a✝ = f a✝
@[reducible, inline]
abbrev SimpleGraph.Hom.comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} (f' : G' →g G'') (f : G →g G') :
G →g G''

Composition of graph homomorphisms.

Equations
@[simp]
theorem SimpleGraph.Hom.coe_comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} (f' : G' →g G'') (f : G →g G') :
def SimpleGraph.Hom.ofLE {V : Type u_1} {G₁ G₂ : SimpleGraph V} (h : G₁ G₂) :

The graph homomorphism from a smaller graph to a bigger one.

Equations
@[simp]
theorem SimpleGraph.Hom.coe_ofLE {V : Type u_1} {G₁ G₂ : SimpleGraph V} (h : G₁ G₂) :
@[reducible, inline]

The identity embedding from a graph to itself.

Equations
@[reducible, inline]
abbrev SimpleGraph.Embedding.toHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') :

An embedding of graphs gives rise to a homomorphism of graphs.

Equations
@[simp]
theorem SimpleGraph.Embedding.coe_toHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {H : SimpleGraph W} (f : G ↪g H) :
@[simp]
theorem SimpleGraph.Embedding.map_adj_iff {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') {v w : V} :
G'.Adj (f v) (f w) G.Adj v w
theorem SimpleGraph.Embedding.map_mem_edgeSet_iff {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') {e : Sym2 V} :
theorem SimpleGraph.Embedding.apply_mem_neighborSet_iff {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') {v w : V} :
def SimpleGraph.Embedding.mapEdgeSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') :

A graph embedding induces an embedding of edge sets.

Equations
@[simp]
def SimpleGraph.Embedding.mapNeighborSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') (v : V) :

A graph embedding induces an embedding of neighbor sets.

Equations
@[simp]
theorem SimpleGraph.Embedding.mapNeighborSet_apply_coe {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ↪g G') (v : V) (w : (G.neighborSet v)) :
def SimpleGraph.Embedding.comap {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph W) :

Given an injective function, there is an embedding from the comapped graph into the original graph.

Equations
@[simp]
theorem SimpleGraph.Embedding.comap_apply {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph W) (v : V) :
(Embedding.comap f G) v = f v
def SimpleGraph.Embedding.map {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) :

Given an injective function, there is an embedding from a graph into the mapped graph.

Equations
@[simp]
theorem SimpleGraph.Embedding.map_apply {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) (v : V) :
(Embedding.map f G) v = f v
@[reducible, inline]
abbrev SimpleGraph.Embedding.induce {V : Type u_1} {G : SimpleGraph V} (s : Set V) :
induce s G ↪g G

Induced graphs embed in the original graph.

Note that if G.induce s = ⊤ (i.e., if s is a clique) then this gives the embedding of a complete graph.

Equations
@[reducible, inline]

Graphs on a set of vertices embed in their spanningCoe.

Equations
def SimpleGraph.Embedding.completeGraph {α : Type u_4} {β : Type u_5} (f : α β) :

Embeddings of types induce embeddings of complete graphs on those types.

Equations
@[simp]
@[reducible, inline]
abbrev SimpleGraph.Embedding.comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} (f' : G' ↪g G'') (f : G ↪g G') :
G ↪g G''

Composition of graph embeddings.

Equations
@[simp]
theorem SimpleGraph.Embedding.coe_comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} (f' : G' ↪g G'') (f : G ↪g G') :
def SimpleGraph.induceHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {s : Set V} {t : Set W} (φ : G →g G') (φst : Set.MapsTo (⇑φ) s t) :
induce s G →g induce t G'

The restriction of a morphism of graphs to induced subgraphs.

Equations
@[simp]
theorem SimpleGraph.coe_induceHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {s : Set V} {t : Set W} (φ : G →g G') (φst : Set.MapsTo (⇑φ) s t) :
(induceHom φ φst) = Set.MapsTo.restrict (⇑φ) s t φst
@[simp]
theorem SimpleGraph.induceHom_id {V : Type u_1} (G : SimpleGraph V) (s : Set V) :
@[simp]
theorem SimpleGraph.induceHom_comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} {s : Set V} {t : Set W} {r : Set X} (φ : G →g G') (φst : Set.MapsTo (⇑φ) s t) (ψ : G' →g G'') (ψtr : Set.MapsTo (⇑ψ) t r) :
(induceHom ψ ψtr).comp (induceHom φ φst) = induceHom (ψ.comp φ)
theorem SimpleGraph.induceHom_injective {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {s : Set V} {t : Set W} (φ : G →g G') (φst : Set.MapsTo (⇑φ) s t) (hi : Set.InjOn (⇑φ) s) :
def SimpleGraph.induceHomOfLE {V : Type u_1} (G : SimpleGraph V) {s s' : Set V} (h : s s') :
induce s G ↪g induce s' G

Given an inclusion of vertex subsets, the induced embedding on induced graphs. This is not an abbreviation for induceHom since we get an embedding in this case.

Equations
@[simp]
theorem SimpleGraph.induceHomOfLE_apply {V : Type u_1} (G : SimpleGraph V) {s s' : Set V} (h : s s') (v : s) :
@[simp]
theorem SimpleGraph.induceHomOfLE_toHom {V : Type u_1} (G : SimpleGraph V) {s s' : Set V} (h : s s') :
@[reducible, inline]
abbrev SimpleGraph.Iso.refl {V : Type u_1} {G : SimpleGraph V} :

The identity isomorphism of a graph with itself.

Equations
@[reducible, inline]
abbrev SimpleGraph.Iso.toEmbedding {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') :

An isomorphism of graphs gives rise to an embedding of graphs.

Equations
@[reducible, inline]
abbrev SimpleGraph.Iso.toHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') :

An isomorphism of graphs gives rise to a homomorphism of graphs.

Equations
@[reducible, inline]
abbrev SimpleGraph.Iso.symm {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') :

The inverse of a graph isomorphism.

Equations
theorem SimpleGraph.Iso.map_adj_iff {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') {v w : V} :
G'.Adj (f v) (f w) G.Adj v w
theorem SimpleGraph.Iso.map_mem_edgeSet_iff {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') {e : Sym2 V} :
theorem SimpleGraph.Iso.apply_mem_neighborSet_iff {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') {v w : V} :
@[simp]
theorem SimpleGraph.Iso.symm_toHom_comp_toHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') :
@[simp]
theorem SimpleGraph.Iso.toHom_comp_symm_toHom {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') :
def SimpleGraph.Iso.mapEdgeSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') :

An isomorphism of graphs induces an equivalence of edge sets.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
def SimpleGraph.Iso.mapNeighborSet {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') (v : V) :

A graph isomorphism induces an equivalence of neighbor sets.

Equations
@[simp]
theorem SimpleGraph.Iso.mapNeighborSet_symm_apply_coe {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') (v : V) (w : (G'.neighborSet (f v))) :
@[simp]
theorem SimpleGraph.Iso.mapNeighborSet_apply_coe {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') (v : V) (w : (G.neighborSet v)) :
theorem SimpleGraph.Iso.card_eq {V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G ≃g G') [Fintype V] [Fintype W] :
def SimpleGraph.Iso.comap {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph W) :

Given a bijection, there is an embedding from the comapped graph into the original graph.

Equations
@[simp]
theorem SimpleGraph.Iso.comap_apply {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph W) (v : V) :
(Iso.comap f G) v = f v
@[simp]
theorem SimpleGraph.Iso.comap_symm_apply {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph W) (w : W) :
(Iso.comap f G).symm w = f.symm w
def SimpleGraph.Iso.map {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) :

Given an injective function, there is an embedding from a graph into the mapped graph.

Equations
@[simp]
theorem SimpleGraph.Iso.map_apply {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) (v : V) :
(Iso.map f G) v = f v
@[simp]
theorem SimpleGraph.Iso.map_symm_apply {V : Type u_1} {W : Type u_2} (f : V W) (G : SimpleGraph V) (w : W) :
(Iso.map f G).symm w = f.symm w
def SimpleGraph.Iso.completeGraph {α : Type u_4} {β : Type u_5} (f : α β) :

Equivalences of types induce isomorphisms of complete graphs on those types.

Equations
@[reducible, inline]
abbrev SimpleGraph.Iso.comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} (f' : G' ≃g G'') (f : G ≃g G') :
G ≃g G''

Composition of graph isomorphisms.

Equations
@[simp]
theorem SimpleGraph.Iso.coe_comp {V : Type u_1} {W : Type u_2} {X : Type u_3} {G : SimpleGraph V} {G' : SimpleGraph W} {G'' : SimpleGraph X} (f' : G' ≃g G'') (f : G ≃g G') :

The graph induced on Set.univ is isomorphic to the original graph.

Equations
@[simp]
theorem SimpleGraph.induceUnivIso_apply {V : Type u_1} (G : SimpleGraph V) (self : { x : V // x Set.univ }) :
G.induceUnivIso self = self
def SimpleGraph.overFin {V : Type u_1} (G : SimpleGraph V) [Fintype V] {n : } (hc : Fintype.card V = n) :

Given a graph over a finite vertex type V and a proof hc that Fintype.card V = n, G.overFin n is an isomorphic (as shown in overFinIso) graph over Fin n.

Equations
noncomputable def SimpleGraph.overFinIso {V : Type u_1} (G : SimpleGraph V) [Fintype V] {n : } (hc : Fintype.card V = n) :

The isomorphism between G and G.overFin hc.

Equations