Documentation

Mathlib.Data.ENNReal.Operations

Properties of addition, multiplication and subtraction on extended non-negative real numbers #

In this file we prove elementary properties of algebraic operations on ℝ≥0∞, including addition, multiplication, natural powers and truncated subtraction, as well as how these interact with the order structure on ℝ≥0∞. Notably excluded from this list are inversion and division, the definitions and properties of which can be found in Mathlib.Data.ENNReal.Inv.

Note: the definitions of the operations included in this file can be found in Mathlib.Data.ENNReal.Basic.

theorem ENNReal.mul_lt_mul {a b c d : ENNReal} (ac : a < c) (bd : b < d) :
a * b < c * d
@[deprecated mul_left_mono (since := "2024-10-15")]
theorem ENNReal.mul_left_mono {a : ENNReal} :
Monotone fun (x : ENNReal) => a * x
@[deprecated mul_right_mono (since := "2024-10-15")]
theorem ENNReal.mul_right_mono {a : ENNReal} :
Monotone fun (x : ENNReal) => x * a
theorem ENNReal.pow_right_strictMono {n : } (hn : n 0) :
StrictMono fun (a : ENNReal) => a ^ n
@[deprecated ENNReal.pow_right_strictMono (since := "2024-10-15")]
theorem ENNReal.pow_strictMono {n : } (hn : n 0) :
StrictMono fun (a : ENNReal) => a ^ n

Alias of ENNReal.pow_right_strictMono.

theorem ENNReal.pow_lt_pow_left {a b : ENNReal} (hab : a < b) {n : } (hn : n 0) :
a ^ n < b ^ n
@[deprecated max_mul (since := "2024-10-15")]
theorem ENNReal.max_mul {a b c : ENNReal} :
(a b) * c = a * c b * c
@[deprecated mul_max (since := "2024-10-15")]
theorem ENNReal.mul_max {a b c : ENNReal} :
theorem ENNReal.mul_left_strictMono {a : ENNReal} (h0 : a 0) (hinf : a ) :
StrictMono fun (x : ENNReal) => a * x
theorem ENNReal.mul_lt_mul_left' {a b c : ENNReal} (h0 : a 0) (hinf : a ) (bc : b < c) :
a * b < a * c
theorem ENNReal.mul_lt_mul_right' {a b c : ENNReal} (h0 : a 0) (hinf : a ) (bc : b < c) :
b * a < c * a
theorem ENNReal.mul_right_inj {a b c : ENNReal} (h0 : a 0) (hinf : a ) :
a * b = a * c b = c
@[deprecated ENNReal.mul_right_inj (since := "2025-01-20")]
theorem ENNReal.mul_eq_mul_left {a b c : ENNReal} (h0 : a 0) (hinf : a ) :
a * b = a * c b = c

Alias of ENNReal.mul_right_inj.

theorem ENNReal.mul_left_inj {a b c : ENNReal} (h0 : c 0) (hinf : c ) :
a * c = b * c a = b
@[deprecated ENNReal.mul_left_inj (since := "2025-01-20")]
theorem ENNReal.mul_eq_mul_right {a b c : ENNReal} (h0 : c 0) (hinf : c ) :
a * c = b * c a = b

Alias of ENNReal.mul_left_inj.

theorem ENNReal.mul_le_mul_left {a b c : ENNReal} (h0 : a 0) (hinf : a ) :
theorem ENNReal.mul_lt_mul_left {a b c : ENNReal} (h0 : a 0) (hinf : a ) :
a * b < a * c b < c
theorem ENNReal.mul_lt_mul_right {a b c : ENNReal} :
c 0c (a * c < b * c a < b)
theorem ENNReal.mul_eq_left {a b : ENNReal} (ha₀ : a 0) (ha : a ) :
a * b = a b = 1
theorem ENNReal.mul_eq_right {a b : ENNReal} (hb₀ : b 0) (hb : b ) :
a * b = b a = 1
theorem ENNReal.pow_pos {a : ENNReal} :
0 < a∀ (n : ), 0 < a ^ n
theorem ENNReal.pow_ne_zero {a : ENNReal} :
a 0∀ (n : ), a ^ n 0
theorem ENNReal.add_lt_add_left {a b c : ENNReal} :
a b < ca + b < a + c
theorem ENNReal.add_lt_add_right {a b c : ENNReal} :
a b < cb + a < c + a
theorem ENNReal.add_lt_add_of_le_of_lt {a b c d : ENNReal} :
a a bc < da + c < b + d
theorem ENNReal.add_lt_add_of_lt_of_le {a b c d : ENNReal} :
c a < bc da + c < b + d
theorem ENNReal.lt_add_right {a b : ENNReal} (ha : a ) (hb : b 0) :
theorem ENNReal.toNNReal_add {r₁ r₂ : ENNReal} (h₁ : r₁ ) (h₂ : r₂ ) :
@[simp]
theorem ENNReal.mul_top {a : ENNReal} (h : a 0) :
@[simp]
theorem ENNReal.top_mul {a : ENNReal} (h : a 0) :
theorem ENNReal.top_pow {n : } (n_pos : 0 < n) :
theorem ENNReal.mul_lt_top {a b : ENNReal} :
a < b < a * b <
theorem ENNReal.mul_pos {a b : ENNReal} (ha : a 0) (hb : b 0) :
@[simp]
theorem ENNReal.pow_eq_top {a : ENNReal} (n : ) (h : a ^ n = ) :
theorem ENNReal.pow_ne_top {a : ENNReal} (h : a ) {n : } :
theorem ENNReal.pow_lt_top {a : ENNReal} :
a < ∀ (n : ), a ^ n <
@[simp]
theorem ENNReal.coe_finset_sum {α : Type u_1} {s : Finset α} {f : αNNReal} :
(∑ as, f a) = as, (f a)
@[simp]
theorem ENNReal.coe_finset_prod {α : Type u_1} {s : Finset α} {f : αNNReal} :
(∏ as, f a) = as, (f a)
theorem ENNReal.add_lt_add {a b c d : ENNReal} (ac : a < c) (bd : b < d) :
a + b < c + d
@[simp]

An element a is AddLECancellable if a + b ≤ a + c implies b ≤ c for all b and c. This is true in ℝ≥0∞ for all elements except .

This lemma has an abbreviated name because it is used frequently.

This lemma has an abbreviated name because it is used frequently.

This lemma has an abbreviated name because it is used frequently.

This lemma has an abbreviated name because it is used frequently.

theorem ENNReal.add_right_inj {a b c : ENNReal} (h : a ) :
a + b = a + c b = c
theorem ENNReal.add_left_inj {a b c : ENNReal} (h : a ) :
b + a = c + a b = c
@[simp]
theorem ENNReal.coe_sub {r p : NNReal} :
(r - p) = r - p

This is a special case of WithTop.coe_sub in the ENNReal namespace

@[simp]
theorem ENNReal.top_sub_coe {r : NNReal} :
- r =

This is a special case of WithTop.top_sub_coe in the ENNReal namespace

@[simp]
theorem ENNReal.top_sub {a : ENNReal} (ha : a ) :
theorem ENNReal.sub_top {a : ENNReal} :

This is a special case of WithTop.sub_top in the ENNReal namespace

theorem ENNReal.sub_ne_top {a b : ENNReal} (ha : a ) :
@[simp]
theorem ENNReal.natCast_sub (m n : ) :
(m - n) = m - n
theorem ENNReal.sub_eq_of_eq_add {a b c : ENNReal} (hb : b ) :
a = c + ba - b = c

See ENNReal.sub_eq_of_eq_add' for a version assuming that a = c + b itself is finite rather than b.

theorem ENNReal.sub_eq_of_eq_add' {a b c : ENNReal} (ha : a ) :
a = c + ba - b = c

Weaker version of ENNReal.sub_eq_of_eq_add assuming that a = c + b itself is finite rather han b.

theorem ENNReal.eq_sub_of_add_eq {a b c : ENNReal} (hc : c ) :
a + c = ba = b - c

See ENNReal.eq_sub_of_add_eq' for a version assuming that b = a + c itself is finite rather than c.

theorem ENNReal.eq_sub_of_add_eq' {a b c : ENNReal} (hb : b ) :
a + c = ba = b - c

Weaker version of ENNReal.eq_sub_of_add_eq assuming that b = a + c itself is finite rather than c.

theorem ENNReal.sub_eq_of_eq_add_rev {a b c : ENNReal} (hb : b ) :
a = b + ca - b = c

See ENNReal.sub_eq_of_eq_add_rev' for a version assuming that a = b + c itself is finite rather than b.

theorem ENNReal.sub_eq_of_eq_add_rev' {a b c : ENNReal} (ha : a ) :
a = b + ca - b = c

Weaker version of ENNReal.sub_eq_of_eq_add_rev assuming that a = b + c itself is finite rather than b.

@[deprecated ENNReal.sub_eq_of_eq_add (since := "2024-09-30")]
theorem ENNReal.sub_eq_of_add_eq {a b c : ENNReal} (hb : b ) (hc : a + b = c) :
c - b = a
@[simp]
theorem ENNReal.add_sub_cancel_left {a b : ENNReal} (ha : a ) :
a + b - a = b
@[simp]
theorem ENNReal.add_sub_cancel_right {a b : ENNReal} (hb : b ) :
a + b - b = a
theorem ENNReal.sub_add_eq_add_sub {a b c : ENNReal} (hab : b a) (b_ne_top : b ) :
a - b + c = a + c - b
theorem ENNReal.le_sub_of_add_le_left {a b c : ENNReal} (ha : a ) :
a + b cb c - a
theorem ENNReal.sub_lt_of_lt_add {a b c : ENNReal} (hac : c a) (h : a < b + c) :
a - c < b
theorem ENNReal.sub_lt_iff_lt_right {a b c : ENNReal} (hb : b ) (hab : b a) :
a - b < c a < c + b
theorem ENNReal.sub_lt_self {a b : ENNReal} (ha : a ) (ha₀ : a 0) (hb : b 0) :
a - b < a
theorem ENNReal.sub_lt_self_iff {a b : ENNReal} (ha : a ) :
a - b < a 0 < a 0 < b
theorem ENNReal.sub_lt_of_sub_lt {a b c : ENNReal} (h₂ : c a) (h₃ : a b ) (h₁ : a - b < c) :
a - c < b
theorem ENNReal.sub_sub_cancel {a b : ENNReal} (h : a ) (h2 : b a) :
a - (a - b) = b
theorem ENNReal.sub_right_inj {a b c : ENNReal} (ha : a ) (hb : b a) (hc : c a) :
a - b = a - c b = c
theorem ENNReal.sub_mul {a b c : ENNReal} (h : 0 < bb < ac ) :
(a - b) * c = a * c - b * c
theorem ENNReal.mul_sub {a b c : ENNReal} (h : 0 < cc < ba ) :
a * (b - c) = a * b - a * c
theorem ENNReal.sub_le_sub_iff_left {a b c : ENNReal} (h : c a) (h' : a ) :
theorem ENNReal.prod_ne_top {α : Type u_1} {s : Finset α} {f : αENNReal} (h : as, f a ) :

A product of finite numbers is still finite.

theorem ENNReal.prod_lt_top {α : Type u_1} {s : Finset α} {f : αENNReal} (h : as, f a < ) :

A product of finite numbers is still finite.

@[simp]
theorem ENNReal.sum_eq_top {α : Type u_1} {s : Finset α} {f : αENNReal} :

A sum is infinite iff one of the summands is infinite.

theorem ENNReal.sum_ne_top {α : Type u_1} {s : Finset α} {f : αENNReal} :

A sum is finite iff all summands are finite.

@[simp]
theorem ENNReal.sum_lt_top {α : Type u_1} {s : Finset α} {f : αENNReal} :

A sum is finite iff all summands are finite.

@[deprecated ENNReal.sum_lt_top (since := "2024-08-25")]
theorem ENNReal.sum_lt_top_iff {α : Type u_1} {s : Finset α} {f : αENNReal} :

Alias of ENNReal.sum_lt_top.


A sum is finite iff all summands are finite.

theorem ENNReal.lt_top_of_sum_ne_top {α : Type u_1} {s : Finset α} {f : αENNReal} (h : xs, f x ) {a : α} (ha : a s) :
theorem ENNReal.toNNReal_sum {α : Type u_1} {s : Finset α} {f : αENNReal} (hf : as, f a ) :

Seeing ℝ≥0∞ as ℝ≥0 does not change their sum, unless one of the ℝ≥0∞ is infinity

theorem ENNReal.toReal_sum {α : Type u_1} {s : Finset α} {f : αENNReal} (hf : as, f a ) :

seeing ℝ≥0∞ as Real does not change their sum, unless one of the ℝ≥0∞ is infinity

theorem ENNReal.ofReal_sum_of_nonneg {α : Type u_1} {s : Finset α} {f : α} (hf : is, 0 f i) :
ENNReal.ofReal (∑ is, f i) = is, ENNReal.ofReal (f i)
theorem ENNReal.sum_lt_sum_of_nonempty {α : Type u_1} {s : Finset α} (hs : s.Nonempty) {f g : αENNReal} (Hlt : is, f i < g i) :
is, f i < is, g i
theorem ENNReal.exists_le_of_sum_le {α : Type u_1} {s : Finset α} (hs : s.Nonempty) {f g : αENNReal} (Hle : is, f i is, g i) :
is, f i g i
theorem ENNReal.mem_Ioo_self_sub_add {x ε₁ ε₂ : ENNReal} :
x x 0ε₁ 0ε₂ 0x Set.Ioo (x - ε₁) (x + ε₂)
noncomputable instance ENNReal.instMulActionNNReal {M : Type u_1} [MulAction ENNReal M] :

A MulAction over ℝ≥0∞ restricts to a MulAction over ℝ≥0.

Equations
theorem ENNReal.smul_def {M : Type u_1} [MulAction ENNReal M] (c : NNReal) (x : M) :
noncomputable instance ENNReal.instModuleNNReal {M : Type u_1} [AddCommMonoid M] [Module ENNReal M] :

A Module over ℝ≥0∞ restricts to a Module over ℝ≥0.

Equations
noncomputable instance ENNReal.instAlgebraNNReal {A : Type u_1} [Semiring A] [Algebra ENNReal A] :

An Algebra over ℝ≥0∞ restricts to an Algebra over ℝ≥0.

Equations