Documentation

Mathlib.Data.Finsupp.AList

Connections between Finsupp and AList #

Main definitions #

noncomputable def Finsupp.toAList {α : Type u_1} {M : Type u_2} [Zero M] (f : α →₀ M) :
AList fun (_x : α) => M

Produce an association list for the finsupp over its support using choice.

Equations
Instances For
    @[simp]
    @[simp]
    theorem Finsupp.mem_toAlist {α : Type u_1} {M : Type u_2} [Zero M] {f : α →₀ M} {x : α} :
    noncomputable def AList.lookupFinsupp {α : Type u_1} {M : Type u_2} [Zero M] (l : AList fun (_x : α) => M) :

    Converts an association list into a finitely supported function via AList.lookup, sending absent keys to zero.

    Equations
    Instances For
      @[simp]
      theorem AList.lookupFinsupp_apply {α : Type u_1} {M : Type u_2} [Zero M] [DecidableEq α] (l : AList fun (_x : α) => M) (a : α) :
      @[simp]
      theorem AList.lookupFinsupp_support {α : Type u_1} {M : Type u_2} [Zero M] [DecidableEq α] [DecidableEq M] (l : AList fun (_x : α) => M) :
      theorem AList.lookupFinsupp_eq_iff_of_ne_zero {α : Type u_1} {M : Type u_2} [Zero M] [DecidableEq α] {l : AList fun (_x : α) => M} {a : α} {x : M} (hx : x 0) :
      theorem AList.lookupFinsupp_eq_zero_iff {α : Type u_1} {M : Type u_2} [Zero M] [DecidableEq α] {l : AList fun (_x : α) => M} {a : α} :
      @[simp]
      theorem AList.empty_lookupFinsupp {α : Type u_1} {M : Type u_2} [Zero M] :
      @[simp]
      theorem AList.insert_lookupFinsupp {α : Type u_1} {M : Type u_2} [Zero M] [DecidableEq α] (l : AList fun (_x : α) => M) (a : α) (m : M) :
      @[simp]
      theorem AList.singleton_lookupFinsupp {α : Type u_1} {M : Type u_2} [Zero M] (a : α) (m : M) :
      @[simp]
      theorem Finsupp.toAList_lookupFinsupp {α : Type u_1} {M : Type u_2} [Zero M] (f : α →₀ M) :