Documentation

Mathlib.Data.Finsupp.Multiset

Equivalence between Multiset and -valued finitely supported functions #

This defines Finsupp.toMultiset the equivalence between α →₀ ℕ and Multiset α, along with Multiset.toFinsupp the reverse equivalence and Finsupp.orderIsoMultiset (the equivalence promoted to an order isomorphism).

Given f : α →₀ ℕ, f.toMultiset is the multiset with multiplicities given by the values of f on the elements of α. We define this function as an AddMonoidHom.

Under the additional assumption of [DecidableEq α], this is available as Multiset.toFinsupp : Multiset α ≃+ (α →₀ ℕ); the two declarations are separate as this assumption is only needed for one direction.

Equations
theorem Finsupp.toMultiset_apply {α : Type u_1} (f : α →₀ ) :
toMultiset f = f.sum fun (a : α) (n : ) => n {a}
@[simp]
theorem Finsupp.toMultiset_single {α : Type u_1} (a : α) (n : ) :
theorem Finsupp.toMultiset_sum {α : Type u_1} {ι : Type u_3} {f : ια →₀ } (s : Finset ι) :
toMultiset (∑ is, f i) = is, toMultiset (f i)
theorem Finsupp.toMultiset_sum_single {ι : Type u_3} (s : Finset ι) (n : ) :
toMultiset (∑ is, single i n) = n s.val
@[simp]
theorem Finsupp.card_toMultiset {α : Type u_1} (f : α →₀ ) :
(toMultiset f).card = f.sum fun (x : α) => id
theorem Finsupp.toMultiset_map {α : Type u_1} {β : Type u_2} (f : α →₀ ) (g : αβ) :
@[simp]
theorem Finsupp.prod_toMultiset {α : Type u_1} [CommMonoid α] (f : α →₀ ) :
(toMultiset f).prod = f.prod fun (a : α) (n : ) => a ^ n
@[simp]
theorem Finsupp.sum_toMultiset {α : Type u_1} [AddCommMonoid α] (f : α →₀ ) :
(toMultiset f).sum = f.sum fun (a : α) (n : ) => n a
@[simp]
theorem Finsupp.count_toMultiset {α : Type u_1} [DecidableEq α] (f : α →₀ ) (a : α) :
@[simp]
theorem Finsupp.mem_toMultiset {α : Type u_1} (f : α →₀ ) (i : α) :

Given a multiset s, s.toFinsupp returns the finitely supported function on given by the multiplicities of the elements of s.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem Multiset.toFinsupp_apply {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :
(toFinsupp s) a = count a s
@[simp]
@[simp]
theorem Multiset.toFinsupp_sum_eq {α : Type u_1} [DecidableEq α] (s : Multiset α) :
((toFinsupp s).sum fun (x : α) => id) = s.card

As an order isomorphism #

Finsupp.toMultiset as an order isomorphism.

Equations
theorem Finsupp.sum_id_lt_of_lt {ι : Type u_3} (m n : ι →₀ ) (h : m < n) :
(m.sum fun (x : ι) => id) < n.sum fun (x : ι) => id
theorem Finsupp.lt_wf (ι : Type u_3) :

The order on ι →₀ ℕ is well-founded.

def Sym.equivNatSum (α : Type u_1) [DecidableEq α] (n : ) :
Sym α n { P : α →₀ // (P.sum fun (x : α) => id) = n }

The nth symmetric power of a type α is naturally equivalent to the subtype of finitely-supported maps α →₀ ℕ with total mass n.

See also Sym.equivNatSumOfFintype when α is finite.

Equations
@[simp]
theorem Sym.coe_equivNatSum_apply_apply (α : Type u_1) [DecidableEq α] (n : ) (s : Sym α n) (a : α) :
@[simp]
theorem Sym.coe_equivNatSum_symm_apply (α : Type u_1) [DecidableEq α] (n : ) (P : { P : α →₀ // (P.sum fun (x : α) => id) = n }) :
noncomputable def Sym.equivNatSumOfFintype (α : Type u_1) [DecidableEq α] (n : ) [Fintype α] :
Sym α n { P : α // i : α, P i = n }

The nth symmetric power of a finite type α is naturally equivalent to the subtype of maps α → ℕ with total mass n.

See also Sym.equivNatSum when α is not necessarily finite.

Equations
@[simp]
theorem Sym.coe_equivNatSumOfFintype_apply_apply (α : Type u_1) [DecidableEq α] (n : ) [Fintype α] (s : Sym α n) (a : α) :
@[simp]
theorem Sym.coe_equivNatSumOfFintype_symm_apply (α : Type u_1) [DecidableEq α] (n : ) [Fintype α] (P : { P : α // i : α, P i = n }) :