Declarations about scalar multiplication on Finsupp
#
Implementation notes #
This file is a noncomputable theory
and uses classical logic throughout.
@[simp]
theorem
Finsupp.single_smul
{α : Type u_1}
{M : Type u_3}
{R : Type u_6}
[Zero M]
[MonoidWithZero R]
[MulActionWithZero R M]
(a b : α)
(f : α → M)
(r : R)
:
def
Finsupp.comapSMul
{α : Type u_1}
{M : Type u_3}
{G : Type u_5}
[Monoid G]
[MulAction G α]
[AddCommMonoid M]
:
Scalar multiplication acting on the domain.
This is not an instance as it would conflict with the action on the range.
See the instance_diamonds
test for examples of such conflicts.
Equations
- Finsupp.comapSMul = { smul := fun (g : G) => Finsupp.mapDomain fun (x : α) => g • x }
Instances For
def
Finsupp.comapMulAction
{α : Type u_1}
{M : Type u_3}
{G : Type u_5}
[Monoid G]
[MulAction G α]
[AddCommMonoid M]
:
Finsupp.comapSMul
is multiplicative
Equations
Instances For
def
Finsupp.comapDistribMulAction
{α : Type u_1}
{M : Type u_3}
{G : Type u_5}
[Monoid G]
[MulAction G α]
[AddCommMonoid M]
:
DistribMulAction G (α →₀ M)
Finsupp.comapSMul
is distributive
Equations
Instances For
Throughout this section, some Monoid
and Semiring
arguments are specified with {}
instead of
[]
. See note [implicit instance arguments].
theorem
IsSMulRegular.finsupp
{α : Type u_1}
{M : Type u_3}
{R : Type u_6}
[Zero M]
[SMulZeroClass R M]
{k : R}
(hk : IsSMulRegular M k)
:
IsSMulRegular (α →₀ M) k
instance
Finsupp.faithfulSMul
{α : Type u_1}
{M : Type u_3}
{R : Type u_6}
[Nonempty α]
[Zero M]
[SMulZeroClass R M]
[FaithfulSMul R M]
:
FaithfulSMul R (α →₀ M)
instance
Finsupp.distribMulAction
(α : Type u_1)
(M : Type u_3)
{R : Type u_6}
[Monoid R]
[AddMonoid M]
[DistribMulAction R M]
:
DistribMulAction R (α →₀ M)
instance
Finsupp.module
(α : Type u_1)
(M : Type u_3)
{R : Type u_6}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
@[simp]
theorem
Finsupp.filter_smul
{α : Type u_1}
{M : Type u_3}
{R : Type u_6}
{p : α → Prop}
[DecidablePred p]
{x✝ : Monoid R}
[AddMonoid M]
[DistribMulAction R M]
{b : R}
{v : α →₀ M}
:
theorem
Finsupp.mapDomain_smul
{α : Type u_1}
{β : Type u_2}
{M : Type u_3}
{R : Type u_6}
{x✝ : Monoid R}
[AddCommMonoid M]
[DistribMulAction R M]
{f : α → β}
(b : R)
(v : α →₀ M)
:
theorem
Finsupp.comapDomain_smul_of_injective
{α : Type u_1}
{β : Type u_2}
{M : Type u_3}
{R : Type u_6}
[AddMonoid M]
[Monoid R]
[DistribMulAction R M]
{f : α → β}
(hf : Function.Injective f)
(r : R)
(v : β →₀ M)
:
A version of Finsupp.comapDomain_smul
that's easier to use.
theorem
Finsupp.sum_smul_index_addMonoidHom
{α : Type u_1}
{M : Type u_3}
{N : Type u_4}
{R : Type u_6}
[AddMonoid M]
[AddCommMonoid N]
[DistribSMul R M]
{g : α →₀ M}
{b : R}
{h : α → M →+ N}
:
A version of Finsupp.sum_smul_index'
for bundled additive maps.
instance
Finsupp.noZeroSMulDivisors
{M : Type u_3}
{R : Type u_6}
[Zero R]
[Zero M]
[SMulZeroClass R M]
{ι : Type u_7}
[NoZeroSMulDivisors R M]
:
NoZeroSMulDivisors R (ι →₀ M)
def
Finsupp.DistribMulActionHom.single
{α : Type u_1}
{M : Type u_3}
{R : Type u_6}
[Monoid R]
[AddMonoid M]
[DistribMulAction R M]
(a : α)
:
Finsupp.single
as a DistribMulActionSemiHom
.
See also Finsupp.lsingle
for the version as a linear map.
Equations
- Finsupp.DistribMulActionHom.single a = { toFun := (↑(Finsupp.singleAddHom a)).toFun, map_smul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
theorem
Finsupp.distribMulActionHom_ext'
{α : Type u_1}
{M : Type u_3}
{N : Type u_4}
{R : Type u_6}
[Monoid R]
[AddMonoid M]
[AddMonoid N]
[DistribMulAction R M]
[DistribMulAction R N]
{f g : (α →₀ M) →+[R] N}
(h : ∀ (a : α), f.comp (DistribMulActionHom.single a) = g.comp (DistribMulActionHom.single a))
:
See note [partially-applied ext lemmas].