Documentation

Mathlib.Data.Nat.Cast.Commute

Cast of natural numbers: lemmas about Commute #

theorem Nat.cast_commute {α : Type u_1} [NonAssocSemiring α] (n : ) (x : α) :
Commute (↑n) x
theorem Commute.ofNat_left {α : Type u_1} [NonAssocSemiring α] (n : ) [n.AtLeastTwo] (x : α) :
theorem Nat.cast_comm {α : Type u_1} [NonAssocSemiring α] (n : ) (x : α) :
n * x = x * n
theorem Nat.commute_cast {α : Type u_1} [NonAssocSemiring α] (x : α) (n : ) :
Commute x n
theorem Commute.ofNat_right {α : Type u_1} [NonAssocSemiring α] (x : α) (n : ) [n.AtLeastTwo] :
@[simp]
theorem SemiconjBy.natCast_mul_right {α : Type u_1} [Semiring α] {a x y : α} (h : SemiconjBy a x y) (n : ) :
@[simp]
theorem SemiconjBy.natCast_mul_left {α : Type u_1} [Semiring α] {a x y : α} (h : SemiconjBy a x y) (n : ) :
@[simp]
theorem SemiconjBy.natCast_mul_natCast_mul {α : Type u_1} [Semiring α] {a x y : α} (h : SemiconjBy a x y) (m n : ) :
@[simp]
theorem Commute.natCast_mul_right {α : Type u_1} [Semiring α] {a b : α} (h : Commute a b) (n : ) :
@[simp]
theorem Commute.natCast_mul_left {α : Type u_1} [Semiring α] {a b : α} (h : Commute a b) (n : ) :
@[simp]
theorem Commute.natCast_mul_natCast_mul {α : Type u_1} [Semiring α] {a b : α} (h : Commute a b) (m n : ) :
theorem Commute.self_natCast_mul {α : Type u_1} [Semiring α] (a : α) (n : ) :
theorem Commute.natCast_mul_self {α : Type u_1} [Semiring α] (a : α) (n : ) :
theorem Commute.self_natCast_mul_natCast_mul {α : Type u_1} [Semiring α] (a : α) (m n : ) :