Counting on ℕ #
This file defines the count
function, which gives, for any predicate on the natural numbers,
"how many numbers under k
satisfy this predicate?".
We then prove several expected lemmas about count
, relating it to the cardinality of other
objects, and helping to evaluate it for specific k
.
Count the number of naturals k < n
satisfying p k
.
Equations
- Nat.count p n = List.countP (fun (b : ℕ) => decide (p b)) (List.range n)
Instances For
Alias of the reverse direction of Nat.count_succ_eq_succ_count_iff
.
Alias of the reverse direction of Nat.count_succ_eq_count_iff
.
Alias of the reverse direction of Nat.count_iff_forall
.
Alias of the reverse direction of Nat.count_iff_forall_not
.
theorem
Nat.count_mono_left
{p : ℕ → Prop}
[DecidablePred p]
{q : ℕ → Prop}
[DecidablePred q]
{n : ℕ}
(hpq : ∀ (k : ℕ), p k → q k)
: