Binary representation of integers using inductive types #
Note: Unlike in Coq, where this representation is preferred because of
the reliance on kernel reduction, in Lean this representation is discouraged
in favor of the "Peano" natural numbers Nat
, and the purpose of this
collection of theorems is to show the equivalence of the different approaches.
Equations
The successor of a PosNum
.
Instances For
Multiplication of two PosNum
s.
Instances For
@[instance 100]
Equations
- PosNum.instOfNatHAddNatOfNat = { ofNat := PosNum.ofNat (n + 1) }
Ordering of PosNum
s.
Equations
- PosNum.one.cmp PosNum.one = Ordering.eq
- x✝.cmp PosNum.one = Ordering.gt
- PosNum.one.cmp x = Ordering.lt
- a.bit0.cmp b.bit0 = a.cmp b
- a.bit0.cmp b.bit1 = Ordering.casesOn (a.cmp b) Ordering.lt Ordering.lt Ordering.gt
- a.bit1.cmp b.bit0 = Ordering.casesOn (a.cmp b) Ordering.lt Ordering.gt Ordering.gt
- a.bit1.cmp b.bit1 = a.cmp b
Instances For
Equations
- PosNum.instLT = { lt := fun (a b : PosNum) => a.cmp b = Ordering.lt }
Equations
- instReprPosNum = { reprPrec := fun (n : PosNum) (x : ℕ) => repr ↑n }
Equations
- instReprNum = { reprPrec := fun (n : Num) (x : ℕ) => repr ↑n }
Equations
- Num.instLT = { lt := fun (a b : Num) => a.cmp b = Ordering.lt }
Instances For
Equations
- Num.ofNat' n = Nat.binaryRec 0 (fun (b : Bool) (x : ℕ) => bif b then Num.bit1 else Num.bit0) n
Instances For
Equations
- ZNum.instLT = { lt := fun (a b : ZNum) => a.cmp b = Ordering.lt }
Equations
- instReprZNum = { reprPrec := fun (n : ZNum) (x : ℕ) => repr ↑n }