Documentation

Mathlib.Data.Stream.Defs

Definition of Stream' and functions on streams #

A stream Stream' α is an infinite sequence of elements of α. One can also think about it as an infinite list. In this file we define Stream' and some functions that take and/or return streams. Note that we already have Stream to represent a similar object, hence the awkward naming.

def Stream' (α : Type u) :

A stream Stream' α is an infinite sequence of elements of α.

Equations
def Stream'.cons {α : Type u} (a : α) (s : Stream' α) :

Prepend an element to a stream.

Equations
def Stream'.get {α : Type u} (s : Stream' α) (n : ) :
α

Get the n-th element of a stream.

Equations
@[reducible, inline]
abbrev Stream'.head {α : Type u} (s : Stream' α) :
α

Head of a stream: Stream'.head s = Stream'.get s 0.

Equations
def Stream'.tail {α : Type u} (s : Stream' α) :

Tail of a stream: Stream'.tail (h :: t) = t.

Equations
def Stream'.drop {α : Type u} (n : ) (s : Stream' α) :

Drop first n elements of a stream.

Equations
def Stream'.All {α : Type u} (p : αProp) (s : Stream' α) :

Proposition saying that all elements of a stream satisfy a predicate.

Equations
def Stream'.Any {α : Type u} (p : αProp) (s : Stream' α) :

Proposition saying that at least one element of a stream satisfies a predicate.

Equations
instance Stream'.instMembership {α : Type u} :

a ∈ s means that a = Stream'.get n s for some n.

Equations
def Stream'.map {α : Type u} {β : Type v} (f : αβ) (s : Stream' α) :

Apply a function f to all elements of a stream s.

Equations
def Stream'.zip {α : Type u} {β : Type v} {δ : Type w} (f : αβδ) (s₁ : Stream' α) (s₂ : Stream' β) :

Zip two streams using a binary operation: Stream'.get n (Stream'.zip f s₁ s₂) = f (Stream'.get s₁) (Stream'.get s₂).

Equations
def Stream'.enum {α : Type u} (s : Stream' α) :

Enumerate a stream by tagging each element with its index.

Equations
def Stream'.const {α : Type u} (a : α) :

The constant stream: Stream'.get n (Stream'.const a) = a.

Equations
def Stream'.iterate {α : Type u} (f : αα) (a : α) :

Iterates of a function as a stream.

Equations
def Stream'.corec {α : Type u} {β : Type v} (f : αβ) (g : αα) :
αStream' β
Equations
def Stream'.corecOn {α : Type u} {β : Type v} (a : α) (f : αβ) (g : αα) :
Equations
def Stream'.corec' {α : Type u} {β : Type v} (f : αβ × α) :
αStream' β
Equations
def Stream'.corecState {σ α : Type u_1} (cmd : StateM σ α) (s : σ) :

Use a state monad to generate a stream through corecursion

Equations
@[reducible, inline]
abbrev Stream'.unfolds {α : Type u} {β : Type v} (g : αβ) (f : αα) (a : α) :
Equations
def Stream'.interleave {α : Type u} (s₁ s₂ : Stream' α) :

Interleave two streams.

Equations
  • One or more equations did not get rendered due to their size.
def Stream'.even {α : Type u} (s : Stream' α) :

Elements of a stream with even indices.

Equations
def Stream'.odd {α : Type u} (s : Stream' α) :

Elements of a stream with odd indices.

Equations
def Stream'.appendStream' {α : Type u} :
List αStream' αStream' α

Append a stream to a list.

Equations
def Stream'.take {α : Type u} :
Stream' αList α

take n s returns a list of the n first elements of stream s

Equations
def Stream'.cycleF {α : Type u} :
α × List α × α × List αα

An auxiliary definition for Stream'.cycle corecursive def

Equations
def Stream'.cycleG {α : Type u} :

An auxiliary definition for Stream'.cycle corecursive def

Equations
def Stream'.cycle {α : Type u} (l : List α) :

Interpret a nonempty list as a cyclic stream.

Equations
def Stream'.tails {α : Type u} (s : Stream' α) :

Tails of a stream, starting with Stream'.tail s.

Equations
def Stream'.initsCore {α : Type u} (l : List α) (s : Stream' α) :

An auxiliary definition for Stream'.inits.

Equations
  • One or more equations did not get rendered due to their size.
def Stream'.inits {α : Type u} (s : Stream' α) :

Nonempty initial segments of a stream.

Equations
def Stream'.pure {α : Type u} (a : α) :

A constant stream, same as Stream'.const.

Equations
def Stream'.apply {α : Type u} {β : Type v} (f : Stream' (αβ)) (s : Stream' α) :

Given a stream of functions and a stream of values, apply n-th function to n-th value.

Equations

Given a stream of functions and a stream of values, apply n-th function to n-th value.

Equations

The stream of natural numbers: Stream'.get n Stream'.nats = n.

Equations