Congruence relations #
This file proves basic properties of the quotient of a type by a congruence relation.
The second half of the file concerns congruence relations on monoids, in which case the quotient by the congruence relation is also a monoid. There are results about the universal property of quotients of monoids, and the isomorphism theorems for monoids.
Implementation notes #
A congruence relation on a monoid M
can be thought of as a submonoid of M × M
for which
membership is an equivalence relation, but whilst this fact is established in the file, it is not
used, since this perspective adds more layers of definitional unfolding.
Tags #
congruence, congruence relation, quotient, quotient by congruence relation, monoid, quotient monoid, isomorphism theorems
Given types with multiplications M, N
, the product of two congruence relations c
on M
and
d
on N
: (x₁, x₂), (y₁, y₂) ∈ M × N
are related by c.prod d
iff x₁
is related to y₁
by c
and x₂
is related to y₂
by d
.
Instances For
Given types with additions M, N
, the product of two congruence relations
c
on M
and d
on N
: (x₁, x₂), (y₁, y₂) ∈ M × N
are related by c.prod d
iff x₁
is related to y₁
by c
and x₂
is related to y₂
by d
.
Instances For
Makes an isomorphism of quotients by two congruence relations, given that the relations are equal.
Equations
- Con.congr h = { toEquiv := Quotient.congr (Equiv.refl M) ⋯, map_mul' := ⋯ }
Instances For
Makes an additive isomorphism of quotients by two additive congruence relations, given that the relations are equal.
Equations
- AddCon.congr h = { toEquiv := Quotient.congr (Equiv.refl M) ⋯, map_add' := ⋯ }
Instances For
The AddSubmonoid
of M × M
defined by an additive congruence
relation on an AddMonoid
M
.
Instances For
The congruence relation on a monoid M
from a submonoid of M × M
for which membership
is an equivalence relation.
Equations
- Con.ofSubmonoid N H = { r := fun (x y : M) => (x, y) ∈ N, iseqv := H, mul' := ⋯ }
Instances For
The additive congruence relation on an AddMonoid
M
from
an AddSubmonoid
of M × M
for which membership is an equivalence relation.
Equations
- AddCon.ofAddSubmonoid N H = { r := fun (x y : M) => (x, y) ∈ N, iseqv := H, add' := ⋯ }
Instances For
Coercion from a congruence relation c
on a monoid M
to the submonoid of M × M
whose
elements are (x, y)
such that x
is related to y
by c
.
Equations
- Con.toSubmonoid = { coe := fun (c : Con M) => ↑c }
Coercion from a congruence relation c
on an AddMonoid
M
to the AddSubmonoid
of M × M
whose elements are (x, y)
such that x
is related to y
by c
.
Equations
- AddCon.toAddSubmonoid = { coe := fun (c : AddCon M) => ↑c }
Given a congruence relation c
on a monoid and a homomorphism f
constant on c
's
equivalence classes, f
has the same image as the homomorphism that f
induces on the
quotient.
Given an additive congruence relation c
on an AddMonoid
and a homomorphism f
constant on c
's equivalence classes, f
has the same image as the homomorphism that f
induces
on the quotient.
Given a monoid homomorphism f
, the induced homomorphism on the quotient by f
's kernel has
the same image as f
.
Given an AddMonoid
homomorphism f
, the induced homomorphism
on the quotient by f
's kernel has the same image as f
.
The first isomorphism theorem for monoids.
Equations
Instances For
The first isomorphism theorem for AddMonoid
s.
Equations
Instances For
The first isomorphism theorem for monoids in the case of a homomorphism with right inverse.
Equations
- Con.quotientKerEquivOfRightInverse f g hf = { toFun := ⇑(Con.kerLift f), invFun := Con.toQuotient ∘ g, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯ }
Instances For
The first isomorphism theorem for AddMonoid
s in the case of a homomorphism
with right inverse.
Equations
- AddCon.quotientKerEquivOfRightInverse f g hf = { toFun := ⇑(AddCon.kerLift f), invFun := AddCon.toQuotient ∘ g, left_inv := ⋯, right_inv := ⋯, map_add' := ⋯ }
Instances For
The first isomorphism theorem for Monoids in the case of a surjective homomorphism.
For a computable
version, see Con.quotientKerEquivOfRightInverse
.
Equations
Instances For
The first isomorphism theorem for AddMonoid
s in the case of a surjective
homomorphism.
For a computable
version, see AddCon.quotientKerEquivOfRightInverse
.
Equations
Instances For
If e : M →* N is surjective then (c.comap e).Quotient ≃* c.Quotient with c : Con N
Equations
Instances For
If e : M →* N is surjective then (c.comap e).Quotient ≃* c.Quotient with c : AddCon N
Equations
Instances For
This version infers the surjectivity of the function from a MulEquiv function
This version infers the surjectivity of the function from a MulEquiv function
The second isomorphism theorem for monoids.
Instances For
The second isomorphism theorem for AddMonoid
s.
Equations
Instances For
The third isomorphism theorem for monoids.
Equations
Instances For
The third isomorphism theorem for AddMonoid
s.
Equations
Instances For
Equations
- c.instSMul = { smul := fun (a : α) => Quotient.map' (fun (x : M) => a • x) ⋯ }
Equations
- c.instVAdd = { vadd := fun (a : α) => Quotient.map' (fun (x : M) => a +ᵥ x) ⋯ }