Documentation

Mathlib.GroupTheory.FreeGroup.Reduce

The maximal reduction of a word in a free group #

Main declarations #

The maximal reduction of a word. It is computable iff α has decidable equality.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The maximal reduction of a word. It is computable iff α has decidable equality.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem FreeGroup.reduce_nil {α : Type u_1} [DecidableEq α] :
      @[simp]
      @[simp]
      theorem FreeGroup.reduce.cons {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] (x : α × Bool) :
      reduce (x :: L) = List.casesOn (reduce L) [x] fun (hd : α × Bool) (tl : List (α × Bool)) => if x.1 = hd.1 x.2 = !hd.2 then tl else x :: hd :: tl
      @[simp]
      theorem FreeAddGroup.reduce.cons {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] (x : α × Bool) :
      reduce (x :: L) = List.casesOn (reduce L) [x] fun (hd : α × Bool) (tl : List (α × Bool)) => if x.1 = hd.1 x.2 = !hd.2 then tl else x :: hd :: tl
      @[simp]
      theorem FreeGroup.reduce.red {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] :
      Red L (reduce L)

      The first theorem that characterises the function reduce: a word reduces to its maximal reduction.

      theorem FreeAddGroup.reduce.red {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] :
      Red L (reduce L)

      The first theorem that characterises the function reduce: a word reduces to its maximal reduction.

      theorem FreeGroup.reduce.not {α : Type u_1} [DecidableEq α] {p : Prop} {L₁ L₂ L₃ : List (α × Bool)} {x : α} {b : Bool} :
      reduce L₁ = L₂ ++ (x, b) :: (x, !b) :: L₃p
      theorem FreeAddGroup.reduce.not {α : Type u_1} [DecidableEq α] {p : Prop} {L₁ L₂ L₃ : List (α × Bool)} {x : α} {b : Bool} :
      reduce L₁ = L₂ ++ (x, b) :: (x, !b) :: L₃p
      theorem FreeGroup.reduce.min {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red (reduce L₁) L₂) :
      reduce L₁ = L₂

      The second theorem that characterises the function reduce: the maximal reduction of a word only reduces to itself.

      theorem FreeAddGroup.reduce.min {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red (reduce L₁) L₂) :
      reduce L₁ = L₂

      The second theorem that characterises the function reduce: the maximal reduction of a word only reduces to itself.

      @[simp]
      theorem FreeGroup.reduce.idem {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] :

      reduce is idempotent, i.e. the maximal reduction of the maximal reduction of a word is the maximal reduction of the word.

      @[simp]

      reduce is idempotent, i.e. the maximal reduction of the maximal reduction of a word is the maximal reduction of the word.

      theorem FreeGroup.reduce.Step.eq {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red.Step L₁ L₂) :
      reduce L₁ = reduce L₂
      theorem FreeAddGroup.reduce.Step.eq {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red.Step L₁ L₂) :
      reduce L₁ = reduce L₂
      theorem FreeGroup.reduce.eq_of_red {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red L₁ L₂) :
      reduce L₁ = reduce L₂

      If a word reduces to another word, then they have a common maximal reduction.

      theorem FreeAddGroup.reduce.eq_of_red {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red L₁ L₂) :
      reduce L₁ = reduce L₂

      If a word reduces to another word, then they have a common maximal reduction.

      theorem FreeGroup.red.reduce_eq {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red L₁ L₂) :
      reduce L₁ = reduce L₂

      Alias of FreeGroup.reduce.eq_of_red.


      If a word reduces to another word, then they have a common maximal reduction.

      Alias of FreeAddGroup.reduce.eq_of_red.


      If a word reduces to another word, then they have a common maximal reduction.

      theorem FreeGroup.Red.reduce_right {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (h : Red L₁ L₂) :
      Red L₁ (reduce L₂)
      theorem FreeAddGroup.Red.reduce_right {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (h : Red L₁ L₂) :
      Red L₁ (reduce L₂)
      theorem FreeGroup.Red.reduce_left {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (h : Red L₁ L₂) :
      Red L₂ (reduce L₁)
      theorem FreeAddGroup.Red.reduce_left {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (h : Red L₁ L₂) :
      Red L₂ (reduce L₁)
      theorem FreeGroup.reduce.sound {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : mk L₁ = mk L₂) :
      reduce L₁ = reduce L₂

      If two words correspond to the same element in the free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined.

      theorem FreeAddGroup.reduce.sound {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : mk L₁ = mk L₂) :
      reduce L₁ = reduce L₂

      If two words correspond to the same element in the additive free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined.

      theorem FreeGroup.reduce.exact {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : reduce L₁ = reduce L₂) :
      mk L₁ = mk L₂

      If two words have a common maximal reduction, then they correspond to the same element in the free group.

      theorem FreeAddGroup.reduce.exact {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : reduce L₁ = reduce L₂) :
      mk L₁ = mk L₂

      If two words have a common maximal reduction, then they correspond to the same element in the additive free group.

      theorem FreeGroup.reduce.self {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] :
      mk (reduce L) = mk L

      A word and its maximal reduction correspond to the same element of the free group.

      theorem FreeAddGroup.reduce.self {α : Type u_1} {L : List (α × Bool)} [DecidableEq α] :
      mk (reduce L) = mk L

      A word and its maximal reduction correspond to the same element of the additive free group.

      theorem FreeGroup.reduce.rev {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red L₁ L₂) :
      Red L₂ (reduce L₁)

      If words w₁ w₂ are such that w₁ reduces to w₂, then w₂ reduces to the maximal reduction of w₁.

      theorem FreeAddGroup.reduce.rev {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red L₁ L₂) :
      Red L₂ (reduce L₁)

      If words w₁ w₂ are such that w₁ reduces to w₂, then w₂ reduces to the maximal reduction of w₁.

      The function that sends an element of the free group to its maximal reduction.

      Equations
      Instances For

        The function that sends an element of the additive free group to its maximal reduction.

        Equations
        Instances For
          theorem FreeGroup.mk_toWord {α : Type u_1} [DecidableEq α] {x : FreeGroup α} :
          mk x.toWord = x
          theorem FreeAddGroup.mk_toWord {α : Type u_1} [DecidableEq α] {x : FreeAddGroup α} :
          mk x.toWord = x
          @[simp]
          theorem FreeGroup.toWord_inj {α : Type u_1} [DecidableEq α] {x y : FreeGroup α} :
          @[simp]
          theorem FreeAddGroup.toWord_inj {α : Type u_1} [DecidableEq α] {x y : FreeAddGroup α} :
          @[simp]
          theorem FreeGroup.toWord_mk {α : Type u_1} {L₁ : List (α × Bool)} [DecidableEq α] :
          (mk L₁).toWord = reduce L₁
          @[simp]
          theorem FreeAddGroup.toWord_mk {α : Type u_1} {L₁ : List (α × Bool)} [DecidableEq α] :
          (mk L₁).toWord = reduce L₁
          @[simp]
          theorem FreeGroup.toWord_of {α : Type u_1} [DecidableEq α] (a : α) :
          @[simp]
          theorem FreeAddGroup.toWord_of {α : Type u_1} [DecidableEq α] (a : α) :
          @[simp]
          theorem FreeGroup.reduce_toWord {α : Type u_1} [DecidableEq α] (x : FreeGroup α) :
          @[simp]
          @[simp]
          theorem FreeGroup.toWord_one {α : Type u_1} [DecidableEq α] :
          @[simp]
          theorem FreeAddGroup.toWord_zero {α : Type u_1} [DecidableEq α] :
          @[simp]
          theorem FreeGroup.toWord_of_pow {α : Type u_1} [DecidableEq α] (a : α) (n : ) :
          @[simp]
          theorem FreeAddGroup.toWord_of_nsmul {α : Type u_1} [DecidableEq α] (a : α) (n : ) :
          @[simp]
          @[simp]
          @[simp]
          def FreeGroup.reduce.churchRosser {α : Type u_1} {L₁ L₂ L₃ : List (α × Bool)} [DecidableEq α] (H12 : Red L₁ L₂) (H13 : Red L₁ L₃) :
          { L₄ : List (α × Bool) // Red L₂ L₄ Red L₃ L₄ }

          Constructive Church-Rosser theorem (compare church_rosser).

          Equations
          Instances For
            def FreeAddGroup.reduce.churchRosser {α : Type u_1} {L₁ L₂ L₃ : List (α × Bool)} [DecidableEq α] (H12 : Red L₁ L₂) (H13 : Red L₁ L₃) :
            { L₄ : List (α × Bool) // Red L₂ L₄ Red L₃ L₄ }

            Constructive Church-Rosser theorem (compare church_rosser).

            Equations
            Instances For
              Equations

              A list containing every word that w₁ reduces to.

              Equations
              Instances For
                theorem FreeGroup.Red.enum.sound {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : L₂ List.filter (fun (b : List (α × Bool)) => decide (Red L₁ b)) L₁.sublists) :
                Red L₁ L₂
                theorem FreeGroup.Red.enum.complete {α : Type u_1} {L₁ L₂ : List (α × Bool)} [DecidableEq α] (H : Red L₁ L₂) :
                @[simp]
                theorem FreeGroup.one_ne_of {α : Type u_1} (a : α) :
                @[simp]
                theorem FreeAddGroup.zero_ne_of {α : Type u_1} (a : α) :
                @[simp]
                theorem FreeGroup.of_ne_one {α : Type u_1} (a : α) :
                of a 1
                @[simp]
                theorem FreeAddGroup.of_ne_zero {α : Type u_1} (a : α) :
                of a 0
                def FreeGroup.norm {α : Type u_1} [DecidableEq α] (x : FreeGroup α) :

                The length of reduced words provides a norm on a free group.

                Equations
                Instances For
                  def FreeAddGroup.norm {α : Type u_1} [DecidableEq α] (x : FreeAddGroup α) :

                  The length of reduced words provides a norm on an additive free group.

                  Equations
                  Instances For
                    @[simp]
                    theorem FreeGroup.norm_inv_eq {α : Type u_1} [DecidableEq α] {x : FreeGroup α} :
                    @[simp]
                    theorem FreeAddGroup.norm_neg_eq {α : Type u_1} [DecidableEq α] {x : FreeAddGroup α} :
                    @[simp]
                    theorem FreeGroup.norm_eq_zero {α : Type u_1} [DecidableEq α] {x : FreeGroup α} :
                    @[simp]
                    theorem FreeAddGroup.norm_eq_zero {α : Type u_1} [DecidableEq α] {x : FreeAddGroup α} :
                    @[simp]
                    theorem FreeGroup.norm_one {α : Type u_1} [DecidableEq α] :
                    norm 1 = 0
                    @[simp]
                    theorem FreeAddGroup.norm_zero {α : Type u_1} [DecidableEq α] :
                    norm 0 = 0
                    @[simp]
                    theorem FreeGroup.norm_of {α : Type u_1} [DecidableEq α] (a : α) :
                    (of a).norm = 1
                    @[simp]
                    theorem FreeAddGroup.norm_of {α : Type u_1} [DecidableEq α] (a : α) :
                    (of a).norm = 1
                    theorem FreeGroup.norm_mk_le {α : Type u_1} {L₁ : List (α × Bool)} [DecidableEq α] :
                    (mk L₁).norm L₁.length
                    theorem FreeAddGroup.norm_mk_le {α : Type u_1} {L₁ : List (α × Bool)} [DecidableEq α] :
                    (mk L₁).norm L₁.length
                    theorem FreeGroup.norm_mul_le {α : Type u_1} [DecidableEq α] (x y : FreeGroup α) :
                    @[simp]
                    theorem FreeGroup.norm_of_pow {α : Type u_1} [DecidableEq α] (a : α) (n : ) :
                    (of a ^ n).norm = n
                    @[simp]
                    theorem FreeAddGroup.norm_of_nsmul {α : Type u_1} [DecidableEq α] (a : α) (n : ) :