The maximal reduction of a word in a free group #
Main declarations #
FreeGroup.reduce
: the maximal reduction of a word in a free groupFreeGroup.norm
: the length of the maximal reduction of a word in a free group
reduce
is idempotent, i.e. the maximal reduction of the maximal reduction of a word is the
maximal reduction of the word.
reduce
is idempotent, i.e. the maximal reduction of the maximal
reduction of a word is the maximal reduction of the word.
Alias of FreeGroup.reduce.eq_of_red
.
If a word reduces to another word, then they have a common maximal reduction.
Alias of FreeAddGroup.reduce.eq_of_red
.
If a word reduces to another word, then they have a common maximal reduction.
If two words correspond to the same element in the free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined.
If two words correspond to the same element in the additive free group, then they have a common maximal reduction. This is the proof that the function that sends an element of the free group to its maximal reduction is well-defined.
A word and its maximal reduction correspond to the same element of the free group.
A word and its maximal reduction correspond to the same element of the additive free group.
The function that sends an element of the free group to its maximal reduction.
Equations
Instances For
The function that sends an element of the additive free group to its maximal reduction.
Equations
Instances For
Constructive Church-Rosser theorem (compare church_rosser
).
Instances For
Constructive Church-Rosser theorem (compare church_rosser
).
Instances For
Equations
Equations
Equations
- One or more equations did not get rendered due to their size.
- FreeGroup.Red.decidableRel [] [] = isTrue ⋯
- FreeGroup.Red.decidableRel [] (_hd2 :: _tl2) = isFalse ⋯
- FreeGroup.Red.decidableRel ((x_2, b) :: tl) [] = match FreeGroup.Red.decidableRel tl [(x_2, !b)] with | isTrue H => isTrue ⋯ | isFalse H => isFalse ⋯
A list containing every word that w₁
reduces to.
Equations
Instances For
The length of reduced words provides a norm on an additive free group.