support of a permutation #
Main definitions #
In the following, f g : Equiv.Perm α
.
Equiv.Perm.Disjoint
: two permutationsf
andg
areDisjoint
if every element is fixed either byf
, or byg
. Equivalently,f
andg
areDisjoint
iff theirsupport
are disjoint.Equiv.Perm.IsSwap
:f = swap x y
forx ≠ y
.Equiv.Perm.support
: the elementsx : α
that are not fixed byf
.
Assume α
is a Fintype:
Equiv.Perm.fixed_point_card_lt_of_ne_one f
says thatf
has strictly less thanFintype.card α - 1
fixed points, unlessf = 1
. (Equivalently,f.support
has at least 2 elements.)
@[simp]
@[simp]
theorem
Equiv.Perm.nodup_of_pairwise_disjoint
{α : Type u_1}
{l : List (Perm α)}
(h1 : 1 ∉ l)
(h2 : List.Pairwise Disjoint l)
:
l.Nodup
@[simp]
theorem
Equiv.Perm.ofSubtype_swap_eq
{α : Type u_1}
[DecidableEq α]
{p : α → Prop}
[DecidablePred p]
(x y : Subtype p)
:
theorem
Equiv.Perm.IsSwap.of_subtype_isSwap
{α : Type u_1}
[DecidableEq α]
{p : α → Prop}
[DecidablePred p]
{f : Perm (Subtype p)}
(h : f.IsSwap)
:
theorem
Equiv.Perm.ne_and_ne_of_swap_mul_apply_ne_self
{α : Type u_1}
[DecidableEq α]
{f : Perm α}
{x y : α}
(hy : (swap x (f x) * f) y ≠ y)
:
The Finset
of nonfixed points of a permutation.
Equations
- f.support = Finset.filter (fun (x : α) => f x ≠ x) Finset.univ
Instances For
theorem
Equiv.Perm.not_mem_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
{x : α}
:
theorem
Equiv.Perm.coe_support_eq_set_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(f : Perm α)
:
@[simp]
@[simp]
theorem
Equiv.Perm.support_ofSubtype
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{p : α → Prop}
[DecidablePred p]
(u : Perm (Subtype p))
:
theorem
Equiv.Perm.mem_support_of_mem_noncommProd_support
{α : Type u_2}
{β : Type u_3}
[DecidableEq β]
[Fintype β]
{s : Finset α}
{f : α → Perm β}
{comm : (↑s).Pairwise (Function.onFun Commute f)}
{x : β}
(hx : x ∈ (s.noncommProd f comm).support)
:
theorem
Equiv.Perm.disjoint_iff_disjoint_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f g : Perm α}
:
theorem
Equiv.Perm.Disjoint.disjoint_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f g : Perm α}
(h : f.Disjoint g)
:
theorem
Equiv.Perm.support_prod_of_pairwise_disjoint
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(l : List (Perm α))
(h : List.Pairwise Disjoint l)
:
theorem
Equiv.Perm.support_noncommProd
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{ι : Type u_2}
{k : ι → Perm α}
{s : Finset ι}
(hs : (↑s).Pairwise fun (i j : ι) => (k i).Disjoint (k j))
:
@[simp]
theorem
Equiv.Perm.support_swap_mul_eq
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(f : Perm α)
(x : α)
(h : f (f x) ≠ x)
:
@[simp]
theorem
Equiv.Perm.support_extend_domain
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{β : Type u_2}
[DecidableEq β]
[Fintype β]
{p : β → Prop}
[DecidablePred p]
(f : α ≃ Subtype p)
{g : Perm α}
:
theorem
Equiv.Perm.card_support_extend_domain
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{β : Type u_2}
[DecidableEq β]
[Fintype β]
{p : β → Prop}
[DecidablePred p]
(f : α ≃ Subtype p)
{g : Perm α}
:
@[simp]
theorem
Equiv.Perm.card_support_swap_mul
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{f : Perm α}
{x : α}
(hx : f x ≠ x)
:
theorem
Equiv.Perm.card_support_swap
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{x y : α}
(hxy : x ≠ y)
:
@[simp]
theorem
Equiv.Perm.card_support_prod_list_of_pairwise_disjoint
{α : Type u_1}
[DecidableEq α]
[Fintype α]
{l : List (Perm α)}
(h : List.Pairwise Disjoint l)
:
@[simp]
theorem
Equiv.Perm.support_subtype_perm
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
(f : Perm α)
(h : ∀ (x : α), x ∈ s ↔ f x ∈ s)
:
Fixed points #
@[simp]