Documentation

Mathlib.GroupTheory.Transfer

The Transfer Homomorphism #

In this file we construct the transfer homomorphism.

Main definitions #

Main results #

noncomputable def Subgroup.leftTransversals.diff {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S T : H.LeftTransversal) [H.FiniteIndex] :
A

The difference of two left transversals

Equations
Instances For
    noncomputable def AddSubgroup.leftTransversals.diff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (S T : H.LeftTransversal) [H.FiniteIndex] :
    A

    The difference of two left transversals

    Equations
    Instances For
      theorem Subgroup.leftTransversals.diff_mul_diff {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (R S T : H.LeftTransversal) [H.FiniteIndex] :
      diff ϕ R S * diff ϕ S T = diff ϕ R T
      theorem AddSubgroup.leftTransversals.diff_add_diff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (R S T : H.LeftTransversal) [H.FiniteIndex] :
      diff ϕ R S + diff ϕ S T = diff ϕ R T
      theorem Subgroup.leftTransversals.diff_self {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (T : H.LeftTransversal) [H.FiniteIndex] :
      diff ϕ T T = 1
      theorem AddSubgroup.leftTransversals.diff_self {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (T : H.LeftTransversal) [H.FiniteIndex] :
      diff ϕ T T = 0
      theorem Subgroup.leftTransversals.diff_inv {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S T : H.LeftTransversal) [H.FiniteIndex] :
      (diff ϕ S T)⁻¹ = diff ϕ T S
      theorem AddSubgroup.leftTransversals.diff_neg {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (S T : H.LeftTransversal) [H.FiniteIndex] :
      -diff ϕ S T = diff ϕ T S
      theorem Subgroup.leftTransversals.smul_diff_smul {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S T : H.LeftTransversal) [H.FiniteIndex] (g : G) :
      diff ϕ (g S) (g T) = diff ϕ S T
      theorem AddSubgroup.leftTransversals.vadd_diff_vadd {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (S T : H.LeftTransversal) [H.FiniteIndex] (g : G) :
      diff ϕ (g +ᵥ S) (g +ᵥ T) = diff ϕ S T
      noncomputable def Subgroup.transferFunction {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
      G HG

      The transfer transversal as a function. Given a ⟨g⟩-orbit q₀, g • q₀, ..., g ^ (m - 1) • q₀ in G ⧸ H, an element g ^ k • q₀ is mapped to g ^ k • g₀ for a fixed choice of representative g₀ of q₀.

      Equations
      Instances For
        theorem Subgroup.coe_transferFunction {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : G H) :
        def Subgroup.transferSet {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
        Set G

        The transfer transversal as a set. Contains elements of the form g ^ k • g₀ for fixed choices of representatives g₀ of fixed choices of representatives q₀ of ⟨g⟩-orbits in G ⧸ H.

        Equations
        Instances For
          theorem Subgroup.mem_transferSet {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (q : G H) :
          def Subgroup.transferTransversal {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :

          The transfer transversal. Contains elements of the form g ^ k • g₀ for fixed choices of representatives g₀ of fixed choices of representatives q₀ of ⟨g⟩-orbits in G ⧸ H.

          Equations
          Instances For
            noncomputable def MonoidHom.transfer {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [H.FiniteIndex] :

            Given ϕ : H →* A from H : Subgroup G to a commutative group A, the transfer homomorphism is transfer ϕ : G →* A.

            Equations
            Instances For
              noncomputable def AddMonoidHom.transfer {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) [H.FiniteIndex] :

              Given ϕ : H →+ A from H : AddSubgroup G to an additive commutative group A, the transfer homomorphism is transfer ϕ : G →+ A.

              Equations
              Instances For
                theorem MonoidHom.transfer_def {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (T : H.LeftTransversal) [H.FiniteIndex] (g : G) :

                Explicit computation of the transfer homomorphism.

                theorem MonoidHom.transfer_eq_pow_aux {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (key : ∀ (k : ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ Hg₀⁻¹ * g ^ k * g₀ = g ^ k) :

                Auxiliary lemma in order to state transfer_eq_pow.

                theorem MonoidHom.transfer_eq_pow {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [H.FiniteIndex] (g : G) (key : ∀ (k : ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ Hg₀⁻¹ * g ^ k * g₀ = g ^ k) :
                ϕ.transfer g = ϕ g ^ H.index,

                The transfer homomorphism G →* center G.

                Equations
                Instances For
                  noncomputable def MonoidHom.transferSylow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [(↑P).FiniteIndex] :
                  G →* P

                  The homomorphism G →* P in Burnside's transfer theorem.

                  Equations
                  Instances For
                    theorem MonoidHom.transferSylow_eq_pow_aux {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] (g : G) (hg : g P) (k : ) (g₀ : G) (h : g₀⁻¹ * g ^ k * g₀ P) :
                    g₀⁻¹ * g ^ k * g₀ = g ^ k

                    Auxiliary lemma in order to state transferSylow_eq_pow.

                    theorem MonoidHom.transferSylow_eq_pow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] (g : G) (hg : g P) :
                    (transferSylow P hP) g = g ^ (↑P).index,
                    theorem MonoidHom.transferSylow_restrict_eq_pow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] :
                    ((transferSylow P hP).restrict P) = fun (x : P) => x ^ (↑P).index

                    Burnside's normal p-complement theorem: If N(P) ≤ C(P), then P has a normal complement.

                    theorem MonoidHom.ker_transferSylow_disjoint {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : (↑P).normalizer Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [(↑P).FiniteIndex] (Q : Subgroup G) (hQ : IsPGroup p Q) :
                    theorem IsCyclic.normalizer_le_centralizer {G : Type u_3} [Group G] [Finite G] {p : } (hp : (Nat.card G).minFac = p) {P : Sylow p G} (hP : IsCyclic P) :
                    theorem IsCyclic.isComplement' {G : Type u_3} [Group G] [Finite G] {p : } (hp : (Nat.card G).minFac = p) {P : Sylow p G} (hP : IsCyclic P) :

                    A cyclic Sylow subgroup for the smallest prime has a normal complement.