Documentation

Mathlib.LinearAlgebra.CliffordAlgebra.EvenEquiv

Isomorphisms with the even subalgebra of a Clifford algebra #

This file provides some notable isomorphisms regarding the even subalgebra, CliffordAlgebra.even.

Main definitions #

Main results #

Constructions needed for CliffordAlgebra.equivEven #

@[reducible, inline]
abbrev CliffordAlgebra.EquivEven.Q' {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :

The quadratic form on the augmented vector space M × R sending v + r•e0 to Q v - r^2.

Equations
theorem CliffordAlgebra.EquivEven.Q'_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M × R) :
(Q' Q) m = Q m.1 - m.2 * m.2

The unit vector in the new dimension

Equations
theorem CliffordAlgebra.EquivEven.ι_eq_v_add_smul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) (r : R) :
(ι (Q' Q)) (m, r) = (v Q) m + r e0 Q
theorem CliffordAlgebra.EquivEven.e0_mul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
e0 Q * e0 Q = -1
theorem CliffordAlgebra.EquivEven.v_sq_scalar {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
(v Q) m * (v Q) m = (algebraMap R (CliffordAlgebra (Q' Q))) (Q m)
theorem CliffordAlgebra.EquivEven.neg_e0_mul_v {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
-(e0 Q * (v Q) m) = (v Q) m * e0 Q
theorem CliffordAlgebra.EquivEven.neg_v_mul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
-((v Q) m * e0 Q) = e0 Q * (v Q) m
@[simp]
theorem CliffordAlgebra.EquivEven.e0_mul_v_mul_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
e0 Q * (v Q) m * e0 Q = (v Q) m
@[simp]
theorem CliffordAlgebra.EquivEven.reverse_v {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
reverse ((v Q) m) = (v Q) m
@[simp]
theorem CliffordAlgebra.EquivEven.involute_v {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
involute ((v Q) m) = -(v Q) m
@[simp]
theorem CliffordAlgebra.EquivEven.reverse_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
reverse (e0 Q) = e0 Q
@[simp]
theorem CliffordAlgebra.EquivEven.involute_e0 {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :

The embedding from the smaller algebra into the new larger one.

Equations
  • One or more equations did not get rendered due to their size.
theorem CliffordAlgebra.toEven_ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :

The embedding from the even subalgebra with an extra dimension into the original algebra.

Equations
  • One or more equations did not get rendered due to their size.
theorem CliffordAlgebra.ofEven_ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (x y : M × R) :
(ofEven Q) (((even.ι (EquivEven.Q' Q)).bilin x) y) = ((ι Q) x.1 + (algebraMap R (CliffordAlgebra Q)) x.2) * ((ι Q) y.1 - (algebraMap R (CliffordAlgebra Q)) y.2)

Any clifford algebra is isomorphic to the even subalgebra of a clifford algebra with an extra dimension (that is, with vector space M × R), with a quadratic form evaluating to -1 on that new basis vector.

Equations

The representation of the clifford conjugate (i.e. the reverse of the involute) in the even subalgebra is just the reverse of the representation.

Constructions needed for CliffordAlgebra.evenEquivEvenNeg #

def CliffordAlgebra.evenToNeg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q Q' : QuadraticForm R M) (h : Q' = -Q) :
(even Q) →ₐ[R] (even Q')

One direction of CliffordAlgebra.evenEquivEvenNeg

Equations
@[simp]
theorem CliffordAlgebra.evenToNeg_ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q Q' : QuadraticForm R M) (h : Q' = -Q) (m₁ m₂ : M) :
(evenToNeg Q Q' h) (((even.ι Q).bilin m₁) m₂) = -((even.ι Q').bilin m₁) m₂
theorem CliffordAlgebra.evenToNeg_comp_evenToNeg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q Q' : QuadraticForm R M) (h : Q' = -Q) (h' : Q = -Q') :
(evenToNeg Q' Q h').comp (evenToNeg Q Q' h) = AlgHom.id R (even Q)
def CliffordAlgebra.evenEquivEvenNeg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :

The even subalgebras of the algebras with quadratic form Q and -Q are isomorphic.

Stated another way, 𝒞ℓ⁺(p,q,r) and 𝒞ℓ⁺(q,p,r) are isomorphic.

Equations
@[simp]
theorem CliffordAlgebra.evenEquivEvenNeg_symm_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (a : (even (-Q))) :
@[simp]
theorem CliffordAlgebra.evenEquivEvenNeg_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (a : (even Q)) :
(evenEquivEvenNeg Q) a = (evenToNeg Q (-Q) ) a