Tensor products of direct sums #
This file shows that taking TensorProduct
s commutes with taking DirectSum
s in both arguments.
Main results #
noncomputable def
TensorProduct.directSum
(R : Type u)
[CommSemiring R]
(S : Type u_1)
[Semiring S]
[Algebra R S]
{ι₁ : Type v₁}
{ι₂ : Type v₂}
[DecidableEq ι₁]
[DecidableEq ι₂]
(M₁ : ι₁ → Type w₁)
(M₂ : ι₂ → Type w₂)
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[(i₁ : ι₁) → Module R (M₁ i₁)]
[(i₂ : ι₂) → Module R (M₂ i₂)]
[(i₁ : ι₁) → Module S (M₁ i₁)]
[∀ (i₁ : ι₁), IsScalarTower R S (M₁ i₁)]
:
The linear equivalence (⨁ i₁, M₁ i₁) ⊗ (⨁ i₂, M₂ i₂) ≃ (⨁ i₁, ⨁ i₂, M₁ i₁ ⊗ M₂ i₂)
, i.e.
"tensor product distributes over direct sum".
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
TensorProduct.directSumLeft
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
(M₁ : ι₁ → Type w₁)
(M₂' : Type w₂')
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₂']
:
Tensor products distribute over a direct sum on the left .
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
TensorProduct.directSumRight
(R : Type u)
[CommSemiring R]
{ι₂ : Type v₂}
[DecidableEq ι₂]
(M₁' : Type w₁')
(M₂ : ι₂ → Type w₂)
[AddCommMonoid M₁']
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[Module R M₁']
[(i₂ : ι₂) → Module R (M₂ i₂)]
:
Tensor products distribute over a direct sum on the right.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
TensorProduct.directSum_lof_tmul_lof
(R : Type u)
[CommSemiring R]
(S : Type u_1)
[Semiring S]
[Algebra R S]
{ι₁ : Type v₁}
{ι₂ : Type v₂}
[DecidableEq ι₁]
[DecidableEq ι₂]
{M₁ : ι₁ → Type w₁}
{M₂ : ι₂ → Type w₂}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[(i₁ : ι₁) → Module R (M₁ i₁)]
[(i₂ : ι₂) → Module R (M₂ i₂)]
[(i₁ : ι₁) → Module S (M₁ i₁)]
[∀ (i₁ : ι₁), IsScalarTower R S (M₁ i₁)]
(i₁ : ι₁)
(m₁ : M₁ i₁)
(i₂ : ι₂)
(m₂ : M₂ i₂)
:
@[simp]
theorem
TensorProduct.directSum_symm_lof_tmul
(R : Type u)
[CommSemiring R]
(S : Type u_1)
[Semiring S]
[Algebra R S]
{ι₁ : Type v₁}
{ι₂ : Type v₂}
[DecidableEq ι₁]
[DecidableEq ι₂]
{M₁ : ι₁ → Type w₁}
{M₂ : ι₂ → Type w₂}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[(i₁ : ι₁) → Module R (M₁ i₁)]
[(i₂ : ι₂) → Module R (M₂ i₂)]
[(i₁ : ι₁) → Module S (M₁ i₁)]
[∀ (i₁ : ι₁), IsScalarTower R S (M₁ i₁)]
(i₁ : ι₁)
(m₁ : M₁ i₁)
(i₂ : ι₂)
(m₂ : M₂ i₂)
:
@[simp]
theorem
TensorProduct.directSumLeft_tmul_lof
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
{M₁ : ι₁ → Type w₁}
{M₂' : Type w₂'}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₂']
(i : ι₁)
(x : M₁ i)
(y : M₂')
:
@[simp]
theorem
TensorProduct.directSumLeft_symm_lof_tmul
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
{M₁ : ι₁ → Type w₁}
{M₂' : Type w₂'}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₂']
(i : ι₁)
(x : M₁ i)
(y : M₂')
:
@[simp]
theorem
TensorProduct.directSumRight_tmul_lof
(R : Type u)
[CommSemiring R]
{ι₂ : Type v₂}
[DecidableEq ι₂]
{M₁' : Type w₁'}
{M₂ : ι₂ → Type w₂}
[AddCommMonoid M₁']
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[Module R M₁']
[(i₂ : ι₂) → Module R (M₂ i₂)]
(x : M₁')
(i : ι₂)
(y : M₂ i)
:
@[simp]
theorem
TensorProduct.directSumRight_symm_lof_tmul
(R : Type u)
[CommSemiring R]
{ι₂ : Type v₂}
[DecidableEq ι₂]
{M₁' : Type w₁'}
{M₂ : ι₂ → Type w₂}
[AddCommMonoid M₁']
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[Module R M₁']
[(i₂ : ι₂) → Module R (M₂ i₂)]
(x : M₁')
(i : ι₂)
(y : M₂ i)
:
theorem
TensorProduct.directSumRight_comp_rTensor
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
{M₁ : ι₁ → Type w₁}
{M₁' : Type w₁'}
{M₂' : Type w₂'}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₁']
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₁']
[Module R M₂']
(f : M₁' →ₗ[R] M₂')
: