Documentation

Mathlib.LinearAlgebra.Eigenspace.Triangularizable

Triangularizable linear endomorphisms #

This file contains basic results relevant to the triangularizability of linear endomorphisms.

Main definitions / results #

References #

TODO #

Define triangularizable endomorphisms (e.g., as existence of a maximal chain of invariant subspaces) and prove that in finite dimensions over a field, this is equivalent to the property that the generalized eigenspaces span the whole space.

Tags #

eigenspace, eigenvector, eigenvalue, eigen

@[deprecated Module.End.exists_hasEigenvalue_of_genEigenspace_eq_top (since := "2024-10-11")]
theorem Module.End.exists_hasEigenvalue_of_iSup_genEigenspace_eq_top {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [Nontrivial M] {f : End R M} (hf : ⨆ (μ : R), ⨆ (k : ), (f.genEigenspace μ) k = ) :
∃ (μ : R), f.HasEigenvalue μ
theorem Module.End.exists_eigenvalue {K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [IsAlgClosed K] [FiniteDimensional K V] [Nontrivial V] (f : End K V) :
∃ (c : K), f.HasEigenvalue c

In finite dimensions, over an algebraically closed field, every linear endomorphism has an eigenvalue.

In finite dimensions, over an algebraically closed field, the generalized eigenspaces of any linear endomorphism span the whole space.

@[deprecated Module.End.iSup_maxGenEigenspace_eq_top (since := "2024-10-11")]

In finite dimensions, over an algebraically closed field, the generalized eigenspaces of any linear endomorphism span the whole space.

theorem Submodule.inf_iSup_genEigenspace {K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {p : Submodule K V} {f : Module.End K V} [FiniteDimensional K V] (h : xp, f x p) (k : ℕ∞) :
p ⨆ (μ : K), (f.genEigenspace μ) k = ⨆ (μ : K), p (f.genEigenspace μ) k
theorem Submodule.eq_iSup_inf_genEigenspace {K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {p : Submodule K V} {f : Module.End K V} [FiniteDimensional K V] (k : ℕ∞) (h : xp, f x p) (h' : ⨆ (μ : K), (f.genEigenspace μ) k = ) :
p = ⨆ (μ : K), p (f.genEigenspace μ) k
theorem Module.End.genEigenspace_restrict_eq_top {K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {p : Submodule K V} {f : End K V} [FiniteDimensional K V] {k : ℕ∞} (h : xp, f x p) (h' : ⨆ (μ : K), (f.genEigenspace μ) k = ) :

In finite dimensions, if the generalized eigenspaces of a linear endomorphism span the whole space then the same is true of its restriction to any invariant submodule.

@[deprecated Module.End.genEigenspace_restrict_eq_top (since := "2024-10-11")]
theorem Module.End.iSup_genEigenspace_restrict_eq_top {K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {p : Submodule K V} {f : End K V} [FiniteDimensional K V] (h : xp, f x p) (h' : ⨆ (μ : K), ⨆ (k : ), (f.genEigenspace μ) k = ) :

In finite dimensions, if the generalized eigenspaces of a linear endomorphism span the whole space then the same is true of its restriction to any invariant submodule.