Documentation

Mathlib.LinearAlgebra.Matrix.Determinant.TotallyUnimodular

Totally unimodular matrices #

This file defines totally unimodular matrices and provides basic API for them.

Main definitions #

Main results #

def Matrix.IsTotallyUnimodular {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] (A : Matrix m n R) :

Is the matrix A totally unimodular?

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Matrix.isTotallyUnimodular_iff {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] (A : Matrix m n R) :
    A.IsTotallyUnimodular ∀ (k : ) (f : Fin km) (g : Fin kn), (A.submatrix f g).det = 0 (A.submatrix f g).det = 1 (A.submatrix f g).det = -1
    theorem Matrix.IsTotallyUnimodular.apply {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] {A : Matrix m n R} (hA : A.IsTotallyUnimodular) (i : m) (j : n) :
    A i j = 0 A i j = 1 A i j = -1
    theorem Matrix.IsTotallyUnimodular.submatrix {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] {A : Matrix m n R} (hA : A.IsTotallyUnimodular) {k : } (f : Fin km) (g : Fin kn) :
    (A.submatrix f g).IsTotallyUnimodular
    theorem Matrix.IsTotallyUnimodular.transpose {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] {A : Matrix m n R} (hA : A.IsTotallyUnimodular) :
    A.transpose.IsTotallyUnimodular
    theorem Matrix.mapEquiv_IsTotallyUnimodular {m : Type u_1} {n : Type u_2} {R : Type u_3} [CommRing R] {X' : Type u_4} {Y' : Type u_5} (A : Matrix m n R) (eX : X' m) (eY : Y' n) :
    Matrix.IsTotallyUnimodular ((fun (x : m) => A x eY) eX) A.IsTotallyUnimodular