Submodule quotients and direct sums #
This file contains some results on the quotient of a module by a direct sum of submodules, and the direct sum of quotients of modules by submodules.
Main definitions #
Submodule.piQuotientLift
: create a map out of the direct sum of quotientsSubmodule.quotientPiLift
: create a map out of the quotient of a direct sumSubmodule.quotientPi
: the quotient of a direct sum is the direct sum of quotients.
def
Submodule.piQuotientLift
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{N : Type u_4}
[AddCommGroup N]
[Module R N]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
(q : Submodule R N)
(f : (i : ι) → Ms i →ₗ[R] N)
(hf : ∀ (i : ι), p i ≤ Submodule.comap (f i) q)
:
Lift a family of maps to the direct sum of quotients.
Equations
- Submodule.piQuotientLift p q f hf = (LinearMap.lsum R (fun (i : ι) => Ms i ⧸ p i) R) fun (i : ι) => (p i).mapQ q (f i) ⋯
Instances For
@[simp]
theorem
Submodule.piQuotientLift_mk
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{N : Type u_4}
[AddCommGroup N]
[Module R N]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
(q : Submodule R N)
(f : (i : ι) → Ms i →ₗ[R] N)
(hf : ∀ (i : ι), p i ≤ Submodule.comap (f i) q)
(x : (i : ι) → Ms i)
:
((Submodule.piQuotientLift p q f hf) fun (i : ι) => Submodule.Quotient.mk (x i)) = Submodule.Quotient.mk (((LinearMap.lsum R Ms R) f) x)
@[simp]
theorem
Submodule.piQuotientLift_single
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{N : Type u_4}
[AddCommGroup N]
[Module R N]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
(q : Submodule R N)
(f : (i : ι) → Ms i →ₗ[R] N)
(hf : ∀ (i : ι), p i ≤ Submodule.comap (f i) q)
(i : ι)
(x : Ms i ⧸ p i)
:
(Submodule.piQuotientLift p q f hf) (Pi.single i x) = ((p i).mapQ q (f i) ⋯) x
def
Submodule.quotientPiLift
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{Ns : ι → Type u_5}
[(i : ι) → AddCommGroup (Ns i)]
[(i : ι) → Module R (Ns i)]
(p : (i : ι) → Submodule R (Ms i))
(f : (i : ι) → Ms i →ₗ[R] Ns i)
(hf : ∀ (i : ι), p i ≤ LinearMap.ker (f i))
:
((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p →ₗ[R] (i : ι) → Ns i
Lift a family of maps to a quotient of direct sums.
Equations
- Submodule.quotientPiLift p f hf = (Submodule.pi Set.univ p).liftQ (LinearMap.pi fun (i : ι) => f i ∘ₗ LinearMap.proj i) ⋯
Instances For
@[simp]
theorem
Submodule.quotientPiLift_mk
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{Ns : ι → Type u_5}
[(i : ι) → AddCommGroup (Ns i)]
[(i : ι) → Module R (Ns i)]
(p : (i : ι) → Submodule R (Ms i))
(f : (i : ι) → Ms i →ₗ[R] Ns i)
(hf : ∀ (i : ι), p i ≤ LinearMap.ker (f i))
(x : (i : ι) → Ms i)
:
(Submodule.quotientPiLift p f hf) (Submodule.Quotient.mk x) = fun (i : ι) => (f i) (x i)
def
Submodule.quotientPi_aux.toFun
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
:
((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p → (i : ι) → Ms i ⧸ p i
Equations
- Submodule.quotientPi_aux.toFun p = ⇑(Submodule.quotientPiLift p (fun (i : ι) => (p i).mkQ) ⋯)
Instances For
theorem
Submodule.quotientPi_aux.map_add
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
(x : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p)
(y : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p)
:
theorem
Submodule.quotientPi_aux.map_smul
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
(r : R)
(x : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p)
:
Submodule.quotientPi_aux.toFun p (r • x) = (RingHom.id R) r • Submodule.quotientPi_aux.toFun p x
def
Submodule.quotientPi_aux.invFun
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
[Fintype ι]
[DecidableEq ι]
:
((i : ι) → Ms i ⧸ p i) → ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p
Equations
- Submodule.quotientPi_aux.invFun p = ⇑(Submodule.piQuotientLift p (Submodule.pi Set.univ p) (LinearMap.single R Ms) ⋯)
Instances For
theorem
Submodule.quotientPi_aux.left_inv
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
[Fintype ι]
[DecidableEq ι]
:
theorem
Submodule.quotientPi_aux.right_inv
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
[Fintype ι]
[DecidableEq ι]
:
def
Submodule.quotientPi
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
(((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p) ≃ₗ[R] (i : ι) → Ms i ⧸ p i
The quotient of a direct sum is the direct sum of quotients.
Equations
- Submodule.quotientPi p = { toFun := Submodule.quotientPi_aux.toFun p, map_add' := ⋯, map_smul' := ⋯, invFun := Submodule.quotientPi_aux.invFun p, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Submodule.quotientPi_symm_apply
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
∀ (a : (i : ι) → Ms i ⧸ p i),
(Submodule.quotientPi p).symm a = (Submodule.piQuotientLift p (Submodule.pi Set.univ p) (LinearMap.single R Ms) ⋯) a
@[simp]
theorem
Submodule.quotientPi_apply
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
∀ (a : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p) (i : ι),
(Submodule.quotientPi p) a i = (Submodule.quotientPiLift p (fun (i : ι) => (p i).mkQ) ⋯) a i