Documentation

Mathlib.LinearAlgebra.SymplecticGroup

The Symplectic Group #

This file defines the symplectic group and proves elementary properties.

Main Definitions #

TODO #

def Matrix.J (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] :

The matrix defining the canonical skew-symmetric bilinear form.

Equations
Instances For
    @[simp]
    theorem Matrix.J_transpose (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] :
    (J l R).transpose = -J l R
    theorem Matrix.J_squared (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
    J l R * J l R = -1
    theorem Matrix.J_inv (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
    (J l R)⁻¹ = -J l R
    theorem Matrix.J_det_mul_J_det (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
    (J l R).det * (J l R).det = 1
    theorem Matrix.isUnit_det_J (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :
    IsUnit (J l R).det
    def Matrix.symplecticGroup (l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] :

    The group of symplectic matrices over a ring R.

    Equations
    Instances For
      def SymplecticGroup.symJ (l : Type u_1) (R : Type u_2) [DecidableEq l] [Fintype l] [CommRing R] :

      The canonical skew-symmetric matrix as an element in the symplectic group.

      Equations
      Instances For
        @[simp]
        theorem SymplecticGroup.coe_J {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] :
        instance SymplecticGroup.hasInv {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] :
        Equations
        theorem SymplecticGroup.coe_inv {l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] (A : (Matrix.symplecticGroup l R)) :