Tensor algebras as direct sums of tensor powers #
In this file we show that TensorAlgebra R M
is isomorphic to a direct sum of tensor powers, as
TensorAlgebra.equivDirectSum
.
noncomputable def
TensorPower.toTensorAlgebra
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
:
The canonical embedding from a tensor power to the tensor algebra
Equations
Instances For
@[simp]
theorem
TensorPower.toTensorAlgebra_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(x : Fin n → M)
:
noncomputable def
TensorAlgebra.ofDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
The canonical map from a direct sum of tensor powers to the tensor algebra.
Equations
- TensorAlgebra.ofDirectSum = DirectSum.toAlgebra R (fun (n : ℕ) => TensorPower R n M) (fun (x : ℕ) => TensorPower.toTensorAlgebra) ⋯ ⋯
Instances For
noncomputable def
TensorAlgebra.toDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
The canonical map from the tensor algebra to a direct sum of tensor powers.
Equations
- TensorAlgebra.toDirectSum = (TensorAlgebra.lift R) (DirectSum.lof R ℕ (fun (n : ℕ) => TensorPower R n M) 1 ∘ₗ ↑(PiTensorProduct.subsingletonEquiv 0).symm)
Instances For
@[simp]
theorem
TensorAlgebra.toDirectSum_ι
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(x : M)
:
toDirectSum ((ι R) x) = (DirectSum.of (fun (n : ℕ) => TensorPower R n M) 1) ((PiTensorProduct.tprod R) fun (x_1 : Fin 1) => x)
@[simp]
theorem
TensorAlgebra.ofDirectSum_toDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(x : TensorAlgebra R M)
:
theorem
TensorPower.list_prod_gradedMonoid_mk_single
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(n : ℕ)
(x : Fin n → M)
:
The product of tensor products made of a single vector is the same as a single product of all the vectors.
theorem
TensorAlgebra.toDirectSum_tensorPower_tprod
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{n : ℕ}
(x : Fin n → M)
:
theorem
TensorAlgebra.toDirectSum_comp_ofDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
@[simp]
theorem
TensorAlgebra.toDirectSum_ofDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(x : DirectSum ℕ fun (n : ℕ) => TensorPower R n M)
:
noncomputable def
TensorAlgebra.equivDirectSum
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
:
The tensor algebra is isomorphic to a direct sum of tensor powers.
Equations
Instances For
@[simp]
theorem
TensorAlgebra.equivDirectSum_symm_apply
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(a : DirectSum ℕ fun (n : ℕ) => TensorPower R n M)
:
@[simp]
theorem
TensorAlgebra.equivDirectSum_apply
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(a : TensorAlgebra R M)
: