Documentation

Mathlib.ModelTheory.Bundled

Bundled First-Order Structures #

This file bundles types together with their first-order structure.

Main Definitions #

TODO #

A type bundled with the structure induced by an equivalence.

Equations
Instances For
    @[simp]
    theorem Equiv.bundledInduced_α (L : FirstOrder.Language) {M : Type w} [L.Structure M] {N : Type w'} (g : M N) :
    def Equiv.bundledInducedEquiv (L : FirstOrder.Language) {M : Type w} [L.Structure M] {N : Type w'} (g : M N) :
    L.Equiv M (bundledInduced L g)

    An equivalence of types as a first-order equivalence to the bundled structure on the codomain.

    Equations
    Instances For

      The equivalence relation on bundled L.Structures indicating that they are isomorphic.

      Equations
      structure FirstOrder.Language.Theory.ModelType {L : Language} (T : L.Theory) :
      Type (max (max u v) (w + 1))

      The type of nonempty models of a first-order theory.

      Instances For

        The object in the category of R-algebras associated to a type equipped with the appropriate typeclasses.

        Equations
        Instances For
          @[simp]
          theorem FirstOrder.Language.Theory.ModelType.coe_of {L : Language} (T : L.Theory) (M : Type w) [L.Structure M] [M T] [Nonempty M] :
          (of T M) = M

          Shrinks a small model to a particular universe.

          Equations
          Instances For

            The reduct of any model of φ.onTheory T is a model of T.

            Equations
            Instances For
              @[simp]
              theorem FirstOrder.Language.Theory.ModelType.reduct_struc {L : Language} {T : L.Theory} {L' : Language} (φ : L →ᴸ L') (M : (φ.onTheory T).ModelType) :
              (reduct φ M).struc = φ.reduct M
              @[simp]
              noncomputable def FirstOrder.Language.Theory.ModelType.defaultExpansion {L : Language} {T : L.Theory} {L' : Language} {φ : L →ᴸ L'} (h : φ.Injective) [(n : ) → (f : L'.Functions n) → Decidable (f Set.range fun (f : L.Functions n) => φ.onFunction f)] [(n : ) → (r : L'.Relations n) → Decidable (r Set.range fun (r : L.Relations n) => φ.onRelation r)] (M : T.ModelType) [Inhabited M] :

              When φ is injective, defaultExpansion expands a model of T to a model of φ.onTheory T arbitrarily.

              Equations
              Instances For
                @[simp]
                theorem FirstOrder.Language.Theory.ModelType.defaultExpansion_Carrier {L : Language} {T : L.Theory} {L' : Language} {φ : L →ᴸ L'} (h : φ.Injective) [(n : ) → (f : L'.Functions n) → Decidable (f Set.range fun (f : L.Functions n) => φ.onFunction f)] [(n : ) → (r : L'.Relations n) → Decidable (r Set.range fun (r : L.Relations n) => φ.onRelation r)] (M : T.ModelType) [Inhabited M] :
                @[simp]
                theorem FirstOrder.Language.Theory.ModelType.defaultExpansion_struc {L : Language} {T : L.Theory} {L' : Language} {φ : L →ᴸ L'} (h : φ.Injective) [(n : ) → (f : L'.Functions n) → Decidable (f Set.range fun (f : L.Functions n) => φ.onFunction f)] [(n : ) → (r : L'.Relations n) → Decidable (r Set.range fun (r : L.Relations n) => φ.onRelation r)] (M : T.ModelType) [Inhabited M] :

                A model of a theory is also a model of any subtheory.

                Equations
                Instances For
                  def FirstOrder.Language.Theory.Model.bundled {L : Language} {T : L.Theory} {M : Type w} [LM : L.Structure M] [ne : Nonempty M] (h : M T) :

                  Bundles M ⊨ T as a T.ModelType.

                  Equations
                  Instances For
                    @[simp]
                    theorem FirstOrder.Language.Theory.coe_of {L : Language} {T : L.Theory} {M : Type w} [L.Structure M] [Nonempty M] (h : M T) :

                    A structure that is elementarily equivalent to a model, bundled as a model.

                    Equations
                    Instances For

                      An elementary substructure of a bundled model as a bundled model.

                      Equations
                      Instances For