Divisor Finsets #
This file defines sets of divisors of a natural number. This is particularly useful as background for defining Dirichlet convolution.
Main Definitions #
Let n : ℕ
. All of the following definitions are in the Nat
namespace:
divisors n
is theFinset
of natural numbers that dividen
.properDivisors n
is theFinset
of natural numbers that dividen
, other thann
.divisorsAntidiagonal n
is theFinset
of pairs(x,y)
such thatx * y = n
.Perfect n
is true whenn
is positive and the sum ofproperDivisors n
isn
.
Implementation details #
divisors 0
,properDivisors 0
, anddivisorsAntidiagonal 0
are defined to be∅
.
Tags #
divisors, perfect numbers
divisors n
is the Finset
of divisors of n
. As a special case, divisors 0 = ∅
.
Equations
- n.divisors = Finset.filter (fun (d : ℕ) => d ∣ n) (Finset.Ico 1 (n + 1))
Instances For
properDivisors n
is the Finset
of divisors of n
, other than n
.
As a special case, properDivisors 0 = ∅
.
Equations
- n.properDivisors = Finset.filter (fun (d : ℕ) => d ∣ n) (Finset.Ico 1 n)
Instances For
divisorsAntidiagonal n
is the Finset
of pairs (x,y)
such that x * y = n
.
As a special case, divisorsAntidiagonal 0 = ∅
.
Equations
Instances For
@[simp]
See also Nat.mem_properDivisors
.
n : ℕ
is perfect if and only the sum of the proper divisors of n
is n
and n
is positive.
Instances For
theorem
Nat.eq_properDivisors_of_subset_of_sum_eq_sum
{n : ℕ}
{s : Finset ℕ}
(hsub : s ⊆ n.properDivisors)
:
∑ x ∈ s, x = ∑ x ∈ n.properDivisors, x → s = n.properDivisors
@[simp]
theorem
Nat.Prime.prod_properDivisors
{α : Type u_1}
[CommMonoid α]
{p : ℕ}
{f : ℕ → α}
(h : Prime p)
:
@[simp]
theorem
Nat.Prime.sum_properDivisors
{α : Type u_1}
[AddCommMonoid α]
{p : ℕ}
{f : ℕ → α}
(h : Prime p)
:
@[simp]
@[simp]
@[simp]
theorem
Nat.prod_properDivisors_prime_pow
{α : Type u_1}
[CommMonoid α]
{k p : ℕ}
{f : ℕ → α}
(h : Prime p)
:
@[simp]
theorem
Nat.sum_properDivisors_prime_nsmul
{α : Type u_1}
[AddCommMonoid α]
{k p : ℕ}
{f : ℕ → α}
(h : Prime p)
:
@[simp]
theorem
Nat.prod_divisors_prime_pow
{α : Type u_1}
[CommMonoid α]
{k p : ℕ}
{f : ℕ → α}
(h : Prime p)
:
@[simp]
theorem
Nat.sum_divisors_prime_pow
{α : Type u_1}
[AddCommMonoid α]
{k p : ℕ}
{f : ℕ → α}
(h : Prime p)
:
The factors of n
are the prime divisors