Documentation

Mathlib.NumberTheory.Divisors

Divisor Finsets #

This file defines sets of divisors of a natural number. This is particularly useful as background for defining Dirichlet convolution.

Main Definitions #

Let n : ℕ. All of the following definitions are in the Nat namespace:

Implementation details #

Tags #

divisors, perfect numbers

divisors n is the Finset of divisors of n. As a special case, divisors 0 = ∅.

Equations
Instances For

    properDivisors n is the Finset of divisors of n, other than n. As a special case, properDivisors 0 = ∅.

    Equations
    Instances For

      divisorsAntidiagonal n is the Finset of pairs (x,y) such that x * y = n. As a special case, divisorsAntidiagonal 0 = ∅.

      Equations
      Instances For
        @[simp]
        theorem Nat.filter_dvd_eq_divisors {n : } (h : n 0) :
        @[simp]
        theorem Nat.divisor_le {n m : } :
        theorem Nat.divisors_subset_of_dvd {n m : } (hzero : n 0) (h : m n) :
        theorem Nat.divisors_subset_properDivisors {n m : } (hzero : n 0) (h : m n) (hdiff : m n) :
        theorem Nat.divisors_filter_dvd_of_dvd {n m : } (hn : n 0) (hm : m n) :
        Finset.filter (fun (d : ) => d m) n.divisors = m.divisors
        @[simp]
        @[simp]
        theorem Nat.map_div_right_divisors {n : } :
        Finset.map { toFun := fun (d : ) => (d, n / d), inj' := } n.divisors = n.divisorsAntidiagonal
        theorem Nat.map_div_left_divisors {n : } :
        Finset.map { toFun := fun (d : ) => (n / d, d), inj' := } n.divisors = n.divisorsAntidiagonal
        def Nat.Perfect (n : ) :

        n : ℕ is perfect if and only the sum of the proper divisors of n is n and n is positive.

        Equations
        Instances For
          theorem Nat.mem_divisors_prime_pow {p : } (pp : Prime p) (k : ) {x : } :
          x (p ^ k).divisors jk, x = p ^ j
          theorem Nat.Prime.divisors {p : } (pp : Prime p) :
          theorem Nat.divisors_prime_pow {p : } (pp : Prime p) (k : ) :
          (p ^ k).divisors = Finset.map { toFun := fun (x : ) => p ^ x, inj' := } (Finset.range (k + 1))
          @[simp]
          @[simp]
          theorem Nat.Prime.prod_properDivisors {α : Type u_1} [CommMonoid α] {p : } {f : α} (h : Prime p) :
          @[simp]
          theorem Nat.Prime.sum_properDivisors {α : Type u_1} [AddCommMonoid α] {p : } {f : α} (h : Prime p) :
          @[simp]
          theorem Nat.Prime.prod_divisors {α : Type u_1} [CommMonoid α] {p : } {f : α} (h : Prime p) :
          @[simp]
          theorem Nat.Prime.sum_divisors {α : Type u_1} [AddCommMonoid α] {p : } {f : α} (h : Prime p) :
          theorem Nat.mem_properDivisors_prime_pow {p : } (pp : Prime p) (k : ) {x : } :
          x (p ^ k).properDivisors ∃ (j : ) (_ : j < k), x = p ^ j
          theorem Nat.properDivisors_prime_pow {p : } (pp : Prime p) (k : ) :
          (p ^ k).properDivisors = Finset.map { toFun := fun (x : ) => p ^ x, inj' := } (Finset.range k)
          @[simp]
          theorem Nat.prod_properDivisors_prime_pow {α : Type u_1} [CommMonoid α] {k p : } {f : α} (h : Prime p) :
          x(p ^ k).properDivisors, f x = xFinset.range k, f (p ^ x)
          @[simp]
          theorem Nat.sum_properDivisors_prime_nsmul {α : Type u_1} [AddCommMonoid α] {k p : } {f : α} (h : Prime p) :
          x(p ^ k).properDivisors, f x = xFinset.range k, f (p ^ x)
          @[simp]
          theorem Nat.prod_divisors_prime_pow {α : Type u_1} [CommMonoid α] {k p : } {f : α} (h : Prime p) :
          x(p ^ k).divisors, f x = xFinset.range (k + 1), f (p ^ x)
          @[simp]
          theorem Nat.sum_divisors_prime_pow {α : Type u_1} [AddCommMonoid α] {k p : } {f : α} (h : Prime p) :
          x(p ^ k).divisors, f x = xFinset.range (k + 1), f (p ^ x)
          theorem Nat.prod_divisorsAntidiagonal {M : Type u_1} [CommMonoid M] (f : M) {n : } :
          in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f i (n / i)
          theorem Nat.sum_divisorsAntidiagonal {M : Type u_1} [AddCommMonoid M] (f : M) {n : } :
          in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f i (n / i)
          theorem Nat.prod_divisorsAntidiagonal' {M : Type u_1} [CommMonoid M] (f : M) {n : } :
          in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f (n / i) i
          theorem Nat.sum_divisorsAntidiagonal' {M : Type u_1} [AddCommMonoid M] (f : M) {n : } :
          in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f (n / i) i

          The factors of n are the prime divisors

          theorem Nat.primeFactors_filter_dvd_of_dvd {m n : } (hn : n 0) (hmn : m n) :
          theorem Nat.prod_div_divisors {α : Type u_1} [CommMonoid α] (n : ) (f : α) :
          theorem Nat.sum_div_divisors {α : Type u_1} [AddCommMonoid α] (n : ) (f : α) :