Documentation

Mathlib.NumberTheory.NumberField.Embeddings

Embeddings of number fields #

This file defines the embeddings of a number field into an algebraic closed field.

Main Definitions and Results #

Tags #

number field, embeddings, places, infinite places

noncomputable instance NumberField.Embeddings.instFintypeRingHom (K : Type u_1) [Field K] [NumberField K] (A : Type u_2) [Field A] [CharZero A] :

There are finitely many embeddings of a number field.

Equations

The number of embeddings of a number field is equal to its finrank.

theorem NumberField.Embeddings.range_eval_eq_rootSet_minpoly (K : Type u_1) (A : Type u_2) [Field K] [NumberField K] [Field A] [Algebra A] [IsAlgClosed A] (x : K) :
(Set.range fun (φ : K →+* A) => φ x) = (minpoly x).rootSet A

Let A be an algebraically closed field and let x ∈ K, with K a number field. The images of x by the embeddings of K in A are exactly the roots in A of the minimal polynomial of x over .

theorem NumberField.Embeddings.finite_of_norm_le (K : Type u_1) [Field K] [NumberField K] (A : Type u_2) [NormedField A] [IsAlgClosed A] [NormedAlgebra A] (B : ) :
{x : K | IsIntegral x ∀ (φ : K →+* A), φ x B}.Finite

Let B be a real number. The set of algebraic integers in K whose conjugates are all smaller in norm than B is finite.

theorem NumberField.Embeddings.pow_eq_one_of_norm_eq_one (K : Type u_1) [Field K] [NumberField K] (A : Type u_2) [NormedField A] [IsAlgClosed A] [NormedAlgebra A] {x : K} (hxi : IsIntegral x) (hx : ∀ (φ : K →+* A), φ x = 1) :
∃ (n : ) (_ : 0 < n), x ^ n = 1

An algebraic integer whose conjugates are all of norm one is a root of unity.

def NumberField.place {K : Type u_1} [Field K] {A : Type u_2} [NormedDivisionRing A] [Nontrivial A] (φ : K →+* A) :

An embedding into a normed division ring defines a place of K

Equations
Instances For
    @[simp]
    theorem NumberField.place_apply {K : Type u_1} [Field K] {A : Type u_2} [NormedDivisionRing A] [Nontrivial A] (φ : K →+* A) (x : K) :
    (place φ) x = φ x
    @[reducible, inline]

    The conjugate of a complex embedding as a complex embedding.

    Equations
    Instances For
      @[simp]
      theorem NumberField.ComplexEmbedding.conjugate_coe_eq {K : Type u_1} [Field K] (φ : K →+* ) (x : K) :
      (conjugate φ) x = (starRingEnd ) (φ x)
      @[reducible, inline]

      An embedding into is real if it is fixed by complex conjugation.

      Equations
      Instances For

        A real embedding as a ring homomorphism from K to .

        Equations
        • .embedding = { toFun := fun (x : K) => (φ x).re, map_one' := , map_mul' := , map_zero' := , map_add' := }
        Instances For
          @[simp]
          theorem NumberField.ComplexEmbedding.IsReal.comp {K : Type u_1} [Field K] {k : Type u_2} [Field k] (f : k →+* K) {φ : K →+* } (hφ : IsReal φ) :
          IsReal (φ.comp f)
          theorem NumberField.ComplexEmbedding.isReal_comp_iff {K : Type u_1} [Field K] {k : Type u_2} [Field k] {f : k ≃+* K} {φ : K →+* } :
          IsReal (φ.comp f) IsReal φ
          theorem NumberField.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] [IsGalois k K] (φ ψ : K →+* ) (h : φ.comp (algebraMap k K) = ψ.comp (algebraMap k K)) :
          ∃ (σ : K ≃ₐ[k] K), φ.comp σ.symm = ψ
          def NumberField.ComplexEmbedding.IsConj {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] (φ : K →+* ) (σ : K ≃ₐ[k] K) :

          IsConj φ σ states that σ : K ≃ₐ[k] K is the conjugation under the embedding φ : K →+* ℂ.

          Equations
          Instances For
            theorem NumberField.ComplexEmbedding.IsConj.eq {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ : K ≃ₐ[k] K} (h : IsConj φ σ) (x : K) :
            theorem NumberField.ComplexEmbedding.IsConj.ext {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ₁ σ₂ : K ≃ₐ[k] K} (h₁ : IsConj φ σ₁) (h₂ : IsConj φ σ₂) :
            σ₁ = σ₂
            theorem NumberField.ComplexEmbedding.IsConj.ext_iff {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ₁ σ₂ : K ≃ₐ[k] K} (h₁ : IsConj φ σ₁) :
            σ₁ = σ₂ IsConj φ σ₂
            theorem NumberField.ComplexEmbedding.IsConj.isReal_comp {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ : K ≃ₐ[k] K} (h : IsConj φ σ) :
            theorem NumberField.ComplexEmbedding.isConj_one_iff {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } :
            IsConj φ 1 IsReal φ
            theorem NumberField.ComplexEmbedding.IsReal.isConjGal_one {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } :
            IsReal φIsConj φ 1

            Alias of the reverse direction of NumberField.ComplexEmbedding.isConj_one_iff.

            theorem NumberField.ComplexEmbedding.IsConj.symm {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ : K ≃ₐ[k] K} (hσ : IsConj φ σ) :
            IsConj φ σ.symm
            theorem NumberField.ComplexEmbedding.isConj_symm {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ : K ≃ₐ[k] K} :
            IsConj φ σ.symm IsConj φ σ
            def NumberField.InfinitePlace (K : Type u_2) [Field K] :
            Type u_2

            An infinite place of a number field K is a place associated to a complex embedding.

            Equations
            Instances For
              noncomputable def NumberField.InfinitePlace.mk {K : Type u_2} [Field K] (φ : K →+* ) :

              Return the infinite place defined by a complex embedding φ.

              Equations
              Instances For
                Equations
                theorem NumberField.InfinitePlace.coe_apply {K : Type u_4} [Field K] (v : InfinitePlace K) (x : K) :
                v x = v x
                theorem NumberField.InfinitePlace.ext {K : Type u_4} [Field K] (v₁ v₂ : InfinitePlace K) (h : ∀ (k : K), v₁ k = v₂ k) :
                v₁ = v₂
                @[simp]
                theorem NumberField.InfinitePlace.apply {K : Type u_2} [Field K] (φ : K →+* ) (x : K) :
                (mk φ) x = Complex.abs (φ x)
                noncomputable def NumberField.InfinitePlace.embedding {K : Type u_2} [Field K] (w : InfinitePlace K) :

                For an infinite place w, return an embedding φ such that w = infinite_place φ .

                Equations
                Instances For
                  theorem NumberField.InfinitePlace.eq_iff_eq {K : Type u_2} [Field K] (x : K) (r : ) :
                  theorem NumberField.InfinitePlace.le_iff_le {K : Type u_2} [Field K] (x : K) (r : ) :
                  theorem NumberField.InfinitePlace.pos_iff {K : Type u_2} [Field K] {w : InfinitePlace K} {x : K} :
                  0 < w x x 0
                  @[simp]

                  An infinite place is real if it is defined by a real embedding.

                  Equations
                  Instances For

                    An infinite place is complex if it is defined by a complex (ie. not real) embedding.

                    Equations
                    Instances For
                      noncomputable def NumberField.InfinitePlace.embedding_of_isReal {K : Type u_2} [Field K] {w : InfinitePlace K} (hw : w.IsReal) :

                      The real embedding associated to a real infinite place.

                      Equations
                      Instances For
                        noncomputable def NumberField.InfinitePlace.mult {K : Type u_2} [Field K] (w : InfinitePlace K) :

                        The multiplicity of an infinite place, that is the number of distinct complex embeddings that define it, see card_filter_mk_eq.

                        Equations
                        Instances For

                          The map from real embeddings to real infinite places as an equiv

                          Equations
                          Instances For

                            The map from nonreal embeddings to complex infinite places

                            Equations
                            Instances For

                              The infinite part of the product formula : for x ∈ K, we have Π_w ‖x‖_w = |norm(x)| where ‖·‖_w is the normalized absolute value for w.

                              theorem NumberField.InfinitePlace.one_le_of_lt_one {K : Type u_2} [Field K] [NumberField K] {w : InfinitePlace K} {a : RingOfIntegers K} (ha : a 0) (h : ∀ ⦃z : InfinitePlace K⦄, z wz a < 1) :
                              1 w a
                              theorem NumberField.is_primitive_element_of_infinitePlace_lt {K : Type u_2} [Field K] [NumberField K] {x : RingOfIntegers K} {w : InfinitePlace K} (h₁ : x 0) (h₂ : ∀ ⦃w' : InfinitePlace K⦄, w' ww' x < 1) (h₃ : w.IsReal |(w.embedding x).re| < 1) :
                              x=
                              theorem NumberField.adjoin_eq_top_of_infinitePlace_lt {K : Type u_2} [Field K] [NumberField K] {x : RingOfIntegers K} {w : InfinitePlace K} (h₁ : x 0) (h₂ : ∀ ⦃w' : InfinitePlace K⦄, w' ww' x < 1) (h₃ : w.IsReal |(w.embedding x).re| < 1) :
                              @[reducible, inline]
                              noncomputable abbrev NumberField.InfinitePlace.nrRealPlaces (K : Type u_2) [Field K] [NumberField K] :

                              The number of infinite real places of the number field K.

                              Equations
                              Instances For
                                @[deprecated NumberField.InfinitePlace.nrRealPlaces (since := "2024-10-24")]

                                Alias of NumberField.InfinitePlace.nrRealPlaces.


                                The number of infinite real places of the number field K.

                                Equations
                                Instances For
                                  @[reducible, inline]
                                  noncomputable abbrev NumberField.InfinitePlace.nrComplexPlaces (K : Type u_2) [Field K] [NumberField K] :

                                  The number of infinite complex places of the number field K.

                                  Equations
                                  Instances For
                                    @[deprecated NumberField.InfinitePlace.nrComplexPlaces (since := "2024-10-24")]

                                    Alias of NumberField.InfinitePlace.nrComplexPlaces.


                                    The number of infinite complex places of the number field K.

                                    Equations
                                    Instances For
                                      def NumberField.InfinitePlace.comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] (w : InfinitePlace K) (f : k →+* K) :

                                      The restriction of an infinite place along an embedding.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem NumberField.InfinitePlace.comap_mk {k : Type u_1} [Field k] {K : Type u_2} [Field K] (φ : K →+* ) (f : k →+* K) :
                                        (mk φ).comap f = mk (φ.comp f)
                                        theorem NumberField.InfinitePlace.comap_comp {k : Type u_1} [Field k] {K : Type u_2} [Field K] {F : Type u_3} [Field F] (w : InfinitePlace K) (f : F →+* K) (g : k →+* F) :
                                        w.comap (f.comp g) = (w.comap f).comap g
                                        theorem NumberField.InfinitePlace.IsReal.comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] (f : k →+* K) {w : InfinitePlace K} (hφ : w.IsReal) :
                                        theorem NumberField.InfinitePlace.mult_comap_le {k : Type u_1} [Field k] {K : Type u_2} [Field K] (f : k →+* K) (w : InfinitePlace K) :

                                        The action of the galois group on infinite places.

                                        Equations
                                        @[simp]
                                        theorem NumberField.InfinitePlace.instMulActionAlgEquiv_smul_coe_apply {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (σ : K ≃ₐ[k] K) (w : InfinitePlace K) (a✝ : K) :
                                        (SMul.smul σ w) a✝ = w (σ.symm a✝)
                                        theorem NumberField.InfinitePlace.smul_eq_comap {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (σ : K ≃ₐ[k] K) (w : InfinitePlace K) :
                                        σ w = w.comap σ.symm
                                        @[simp]
                                        theorem NumberField.InfinitePlace.smul_apply {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (σ : K ≃ₐ[k] K) (w : InfinitePlace K) (x : K) :
                                        (σ w) x = w (σ.symm x)
                                        @[simp]
                                        theorem NumberField.InfinitePlace.smul_mk {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (σ : K ≃ₐ[k] K) (φ : K →+* ) :
                                        σ mk φ = mk (φ.comp σ.symm)
                                        theorem NumberField.InfinitePlace.comap_smul {k : Type u_1} [Field k] {K : Type u_2} [Field K] {F : Type u_3} [Field F] [Algebra k K] (σ : K ≃ₐ[k] K) (w : InfinitePlace K) {f : F →+* K} :
                                        (σ w).comap f = w.comap ((↑σ.symm).comp f)
                                        theorem NumberField.InfinitePlace.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] (φ ψ : K →+* ) (h : φ.comp (algebraMap k K) = ψ.comp (algebraMap k K)) :
                                        ∃ (σ : K ≃ₐ[k] K), φ.comp σ.symm = ψ
                                        theorem NumberField.InfinitePlace.exists_smul_eq_of_comap_eq {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] {w w' : InfinitePlace K} (h : w.comap (algebraMap k K) = w'.comap (algebraMap k K)) :
                                        ∃ (σ : K ≃ₐ[k] K), σ w = w'

                                        The orbits of infinite places under the action of the galois group are indexed by the infinite places of the base field.

                                        Equations
                                        Instances For
                                          def NumberField.InfinitePlace.IsUnramified (k : Type u_1) [Field k] {K : Type u_2} [Field K] [Algebra k K] (w : InfinitePlace K) :

                                          An infinite place is unramified in a field extension if the restriction has the same multiplicity.

                                          Equations
                                          Instances For
                                            theorem NumberField.InfinitePlace.IsUnramified.comap_algHom {k : Type u_1} [Field k] {K : Type u_2} [Field K] {F : Type u_3} [Field F] [Algebra k K] [Algebra k F] {w : InfinitePlace F} (h : IsUnramified k w) (f : K →ₐ[k] F) :
                                            IsUnramified k (w.comap f)
                                            theorem NumberField.InfinitePlace.IsUnramified.of_restrictScalars {k : Type u_1} [Field k] (K : Type u_2) [Field K] {F : Type u_3} [Field F] [Algebra k K] [Algebra k F] [Algebra K F] [IsScalarTower k K F] {w : InfinitePlace F} (h : IsUnramified k w) :
                                            theorem NumberField.InfinitePlace.IsUnramified.comap {k : Type u_1} [Field k] (K : Type u_2) [Field K] {F : Type u_3} [Field F] [Algebra k K] [Algebra k F] [Algebra K F] [IsScalarTower k K F] {w : InfinitePlace F} (h : IsUnramified k w) :

                                            A infinite place of the base field is unramified in a field extension if every infinite place over it is unramified.

                                            Equations
                                            Instances For
                                              class IsUnramifiedAtInfinitePlaces (k : Type u_1) [Field k] (K : Type u_2) [Field K] [Algebra k K] :

                                              A field extension is unramified at infinite places if every infinite place is unramified.

                                              Instances

                                                The infinite place of the rationals. #

                                                The infinite place of , coming from the canonical map ℚ → ℂ.

                                                Equations
                                                Instances For

                                                  A number field K is totally real if all of its infinite places are real. In other words, the image of every ring homomorphism K → ℂ is a subset of .

                                                  Instances