The category of frames.
Equations
Instances For
Equations
- Frm.instCoeSortType = CategoryTheory.Bundled.coeSort
Equations
- Frm.instInhabited = { default := Frm.of PUnit.{?u.3 + 1} }
@[reducible, inline]
An abbreviation of FrameHom
that assumes Frame
instead of the weaker CompleteLattice
.
Necessary for the category theory machinery.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- Frm.instConcreteCategory = id inferInstance
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
Frm.Iso.mk_hom_toFun
{α : Frm}
{β : Frm}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(Frm.Iso.mk e).hom a = e a
@[simp]
theorem
Frm.Iso.mk_inv_toFun
{α : Frm}
{β : Frm}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(Frm.Iso.mk e).inv a = e.symm a
The forgetful functor from TopCatᵒᵖ
to Frm
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
topCatOpToFrm_obj
(X : TopCatᵒᵖ)
:
topCatOpToFrm.obj X = Frm.of (TopologicalSpace.Opens ↑(Opposite.unop X))
@[simp]
theorem
topCatOpToFrm_map :
∀ {X Y : TopCatᵒᵖ} (f : X ⟶ Y), topCatOpToFrm.map f = TopologicalSpace.Opens.comap f.unop