Extra lemmas about intervals #
This file contains lemmas about intervals that cannot be included into Order.Interval.Set.Basic
because this would create an import
cycle. Namely, lemmas in this file can use definitions
from Data.Set.Lattice
, including Disjoint
.
We consider various intersections and unions of half infinite intervals.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.iUnion_Ico_eq_Iio_self_iff
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
{a : α}
:
@[simp]
theorem
Set.iUnion_Ioc_eq_Ioi_self_iff
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
{a : α}
:
@[simp]
theorem
Set.biUnion_Ico_eq_Iio_self_iff
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{p : ι → Prop}
{f : (i : ι) → p i → α}
{a : α}
:
@[simp]
theorem
Set.biUnion_Ioc_eq_Ioi_self_iff
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{p : ι → Prop}
{f : (i : ι) → p i → α}
{a : α}
:
theorem
IsGLB.iUnion_Ioi_eq
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{a : α}
{f : ι → α}
(h : IsGLB (Set.range f) a)
:
theorem
IsLUB.iUnion_Iio_eq
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{a : α}
{f : ι → α}
(h : IsLUB (Set.range f) a)
:
theorem
IsGLB.biUnion_Ici_eq_Ioi
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_glb : IsGLB s a)
(a_not_mem : a ∉ s)
:
theorem
IsGLB.biUnion_Ici_eq_Ici
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_glb : IsGLB s a)
(a_mem : a ∈ s)
:
theorem
IsLUB.biUnion_Iic_eq_Iio
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_lub : IsLUB s a)
(a_not_mem : a ∉ s)
:
theorem
IsLUB.biUnion_Iic_eq_Iic
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_lub : IsLUB s a)
(a_mem : a ∈ s)
:
theorem
iUnion_Ici_eq_Ioi_iInf
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(no_least_elem : ⨅ (i : ι), f i ∉ Set.range f)
:
theorem
iUnion_Iic_eq_Iio_iSup
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(no_greatest_elem : ⨆ (i : ι), f i ∉ Set.range f)
:
theorem
iUnion_Ici_eq_Ici_iInf
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(has_least_elem : ⨅ (i : ι), f i ∈ Set.range f)
:
theorem
iUnion_Iic_eq_Iic_iSup
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(has_greatest_elem : ⨆ (i : ι), f i ∈ Set.range f)
:
theorem
iUnion_Iic_of_not_bddAbove_range
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
(hf : ¬BddAbove (Set.range f))
:
theorem
iInter_Iio_of_not_bddBelow_range
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
(hf : ¬BddBelow (Set.range f))
: