Documentation

Mathlib.Order.RelClasses

Unbundled relation classes #

In this file we prove some properties of Is* classes defined in Mathlib.Order.Defs. The main difference between these classes and the usual order classes (Preorder etc) is that usual classes extend LE and/or LT while these classes take a relation as an explicit argument.

theorem of_eq {α : Type u} {r : ααProp} [IsRefl α r] {a b : α} :
a = br a b
theorem comm {α : Type u} {r : ααProp} [IsSymm α r] {a b : α} :
r a b r b a
theorem antisymm' {α : Type u} {r : ααProp} [IsAntisymm α r] {a b : α} :
r a br b ab = a
theorem antisymm_iff {α : Type u} {r : ααProp} [IsRefl α r] [IsAntisymm α r] {a b : α} :
r a b r b a a = b
@[elab_without_expected_type]
theorem antisymm_of {α : Type u} (r : ααProp) [IsAntisymm α r] {a b : α} :
r a br b aa = b

A version of antisymm with r explicit.

This lemma matches the lemmas from lean core in Init.Algebra.Classes, but is missing there.

@[elab_without_expected_type]
theorem antisymm_of' {α : Type u} (r : ααProp) [IsAntisymm α r] {a b : α} :
r a br b ab = a

A version of antisymm' with r explicit.

This lemma matches the lemmas from lean core in Init.Algebra.Classes, but is missing there.

theorem comm_of {α : Type u} (r : ααProp) [IsSymm α r] {a b : α} :
r a b r b a

A version of comm with r explicit.

This lemma matches the lemmas from lean core in Init.Algebra.Classes, but is missing there.

theorem IsRefl.swap {α : Type u} (r : ααProp) [IsRefl α r] :
theorem IsIrrefl.swap {α : Type u} (r : ααProp) [IsIrrefl α r] :
theorem IsTrans.swap {α : Type u} (r : ααProp) [IsTrans α r] :
theorem IsAntisymm.swap {α : Type u} (r : ααProp) [IsAntisymm α r] :
theorem IsAsymm.swap {α : Type u} (r : ααProp) [IsAsymm α r] :
theorem IsTotal.swap {α : Type u} (r : ααProp) [IsTotal α r] :
theorem IsTrichotomous.swap {α : Type u} (r : ααProp) [IsTrichotomous α r] :
theorem IsPreorder.swap {α : Type u} (r : ααProp) [IsPreorder α r] :
theorem IsStrictOrder.swap {α : Type u} (r : ααProp) [IsStrictOrder α r] :
theorem IsPartialOrder.swap {α : Type u} (r : ααProp) [IsPartialOrder α r] :
theorem IsAsymm.isAntisymm {α : Type u} (r : ααProp) [IsAsymm α r] :
theorem IsAsymm.isIrrefl {α : Type u} {r : ααProp} [IsAsymm α r] :
theorem IsTotal.isTrichotomous {α : Type u} (r : ααProp) [IsTotal α r] :
@[instance 100]
instance IsTotal.to_isRefl {α : Type u} (r : ααProp) [IsTotal α r] :
IsRefl α r
theorem ne_of_irrefl {α : Type u} {r : ααProp} [IsIrrefl α r] {x y : α} :
r x yx y
theorem ne_of_irrefl' {α : Type u} {r : ααProp} [IsIrrefl α r] {x y : α} :
r x yy x
theorem not_rel_of_subsingleton {α : Type u} (r : ααProp) [IsIrrefl α r] [Subsingleton α] (x y : α) :
¬r x y
theorem rel_of_subsingleton {α : Type u} (r : ααProp) [IsRefl α r] [Subsingleton α] (x y : α) :
r x y
@[simp]
theorem empty_relation_apply {α : Type u} (a b : α) :
theorem eq_empty_relation {α : Type u} (r : ααProp) [IsIrrefl α r] [Subsingleton α] :
theorem trans_trichotomous_left {α : Type u} {r : ααProp} [IsTrans α r] [IsTrichotomous α r] {a b c : α} (h₁ : ¬r b a) (h₂ : r b c) :
r a c
theorem trans_trichotomous_right {α : Type u} {r : ααProp} [IsTrans α r] [IsTrichotomous α r] {a b c : α} (h₁ : r a b) (h₂ : ¬r c b) :
r a c
theorem transitive_of_trans {α : Type u} (r : ααProp) [IsTrans α r] :
theorem rel_congr_left {α : Type u} {r : ααProp} [IsSymm α r] [IsTrans α r] {a b c : α} (h : r a b) :
r a c r b c
theorem rel_congr_right {α : Type u} {r : ααProp} [IsSymm α r] [IsTrans α r] {a b c : α} (h : r b c) :
r a b r a c
theorem rel_congr {α : Type u} {r : ααProp} [IsSymm α r] [IsTrans α r] {a b c d : α} (h₁ : r a b) (h₂ : r c d) :
r a c r b d
theorem extensional_of_trichotomous_of_irrefl {α : Type u} (r : ααProp) [IsTrichotomous α r] [IsIrrefl α r] {a b : α} (H : ∀ (x : α), r x a r x b) :
a = b

In a trichotomous irreflexive order, every element is determined by the set of predecessors.

@[reducible, inline]
abbrev partialOrderOfSO {α : Type u} (r : ααProp) [IsStrictOrder α r] :

Construct a partial order from an isStrictOrder relation.

See note [reducible non-instances].

Equations
@[reducible, inline]
abbrev linearOrderOfSTO {α : Type u} (r : ααProp) [IsStrictTotalOrder α r] [DecidableRel r] :

Construct a linear order from an IsStrictTotalOrder relation.

See note [reducible non-instances].

Equations

Order connection #

class IsOrderConnected (α : Type u) (lt : ααProp) :

A connected order is one satisfying the condition a < c → a < b ∨ b < c. This is recognizable as an intuitionistic substitute for a ≤ b ∨ b ≤ a on the constructive reals, and is also known as negative transitivity, since the contrapositive asserts transitivity of the relation ¬ a < b.

  • conn (a b c : α) : lt a clt a b lt b c

    A connected order is one satisfying the condition a < c → a < b ∨ b < c.

Instances
    theorem IsOrderConnected.neg_trans {α : Type u} {r : ααProp} [IsOrderConnected α r] {a b c : α} (h₁ : ¬r a b) (h₂ : ¬r b c) :
    ¬r a c
    theorem isStrictWeakOrder_of_isOrderConnected {α : Type u} {r : ααProp} [IsAsymm α r] [IsOrderConnected α r] :
    @[instance 100]

    Well-order #

    class IsWellFounded (α : Type u) (r : ααProp) :

    A well-founded relation. Not to be confused with IsWellOrder.

    Instances
      theorem isWellFounded_iff (α : Type u) (r : ααProp) :
      @[irreducible]
      theorem WellFoundedRelation.asymmetric {α : Sort u_1} [WellFoundedRelation α] {a b : α} :
      rel a b¬rel b a
      @[irreducible]
      theorem WellFoundedRelation.asymmetric₃ {α : Sort u_1} [WellFoundedRelation α] {a b c : α} :
      rel a brel b c¬rel c a
      theorem WellFounded.prod_lex {α : Type u} {β : Type v} {ra : ααProp} {rb : ββProp} (ha : WellFounded ra) (hb : WellFounded rb) :
      theorem WellFounded.psigma_lex {α : Sort u_1} {β : αSort u_2} {r : ααProp} {s : (a : α) → β aβ aProp} (ha : WellFounded r) (hb : ∀ (x : α), WellFounded (s x)) :

      The lexicographical order of well-founded relations is well-founded.

      theorem WellFounded.psigma_revLex {α : Sort u_1} {β : Sort u_2} {r : ααProp} {s : ββProp} (ha : WellFounded r) (hb : WellFounded s) :
      theorem WellFounded.psigma_skipLeft (α : Type u) {β : Type v} {s : ββProp} (hb : WellFounded s) :
      theorem IsWellFounded.induction {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), r y xC y)C x) :
      C a

      Induction on a well-founded relation.

      theorem IsWellFounded.apply {α : Type u} (r : ααProp) [IsWellFounded α r] (a : α) :
      Acc r a

      All values are accessible under the well-founded relation.

      def IsWellFounded.fix {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} :
      ((x : α) → ((y : α) → r y xC y)C x)(x : α) → C x

      Creates data, given a way to generate a value from all that compare as less under a well-founded relation. See also IsWellFounded.fix_eq.

      Equations
      theorem IsWellFounded.fix_eq {α : Type u} (r : ααProp) [IsWellFounded α r] {C : αSort u_1} (F : (x : α) → ((y : α) → r y xC y)C x) (x : α) :
      fix r F x = F x fun (y : α) (x : r y x) => fix r F y

      The value from IsWellFounded.fix is built from the previous ones as specified.

      Derive a WellFoundedRelation instance from an isWellFounded instance.

      Equations
      theorem WellFounded.asymmetric {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b : α) :
      r a b¬r b a
      theorem WellFounded.asymmetric₃ {α : Sort u_1} {r : ααProp} (h : WellFounded r) (a b c : α) :
      r a br b c¬r c a
      @[instance 100]
      instance instIsAsymmOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
      IsAsymm α r
      @[instance 100]
      instance instIsIrreflOfIsWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] :
      instance instIsWellFoundedTransGen {α : Type u} (r : ααProp) [i : IsWellFounded α r] :
      @[reducible, inline]
      abbrev WellFoundedLT (α : Type u_1) [LT α] :

      A class for a well founded relation <.

      Equations
      @[reducible, inline]
      abbrev WellFoundedGT (α : Type u_1) [LT α] :

      A class for a well founded relation >.

      Equations
      theorem wellFounded_lt {α : Type u} [LT α] [WellFoundedLT α] :
      WellFounded fun (x1 x2 : α) => x1 < x2
      theorem wellFounded_gt {α : Type u} [LT α] [WellFoundedGT α] :
      WellFounded fun (x1 x2 : α) => x1 > x2
      class IsWellOrder (α : Type u) (r : ααProp) extends IsTrichotomous α r, IsTrans α r, IsWellFounded α r :

      A well order is a well-founded linear order.

      Instances
        @[instance 100]
        instance instIsStrictTotalOrderOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
        @[instance 100]
        instance instIsTrichotomousOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
        @[instance 100]
        instance instIsTransOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
        IsTrans α r
        @[instance 100]
        instance instIsIrreflOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
        @[instance 100]
        instance instIsAsymmOfIsWellOrder {α : Type u_1} (r : ααProp) [IsWellOrder α r] :
        IsAsymm α r
        theorem WellFoundedLT.induction {α : Type u} [LT α] [WellFoundedLT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), y < xC y)C x) :
        C a

        Inducts on a well-founded < relation.

        theorem WellFoundedLT.apply {α : Type u} [LT α] [WellFoundedLT α] (a : α) :
        Acc (fun (x1 x2 : α) => x1 < x2) a

        All values are accessible under the well-founded <.

        def WellFoundedLT.fix {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} :
        ((x : α) → ((y : α) → y < xC y)C x)(x : α) → C x

        Creates data, given a way to generate a value from all that compare as lesser. See also WellFoundedLT.fix_eq.

        Equations
        theorem WellFoundedLT.fix_eq {α : Type u} [LT α] [WellFoundedLT α] {C : αSort u_1} (F : (x : α) → ((y : α) → y < xC y)C x) (x : α) :
        fix F x = F x fun (y : α) (x : y < x) => fix F y

        The value from WellFoundedLT.fix is built from the previous ones as specified.

        theorem WellFoundedGT.induction {α : Type u} [LT α] [WellFoundedGT α] {C : αProp} (a : α) (ind : ∀ (x : α), (∀ (y : α), x < yC y)C x) :
        C a

        Inducts on a well-founded > relation.

        theorem WellFoundedGT.apply {α : Type u} [LT α] [WellFoundedGT α] (a : α) :
        Acc (fun (x1 x2 : α) => x1 > x2) a

        All values are accessible under the well-founded >.

        def WellFoundedGT.fix {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} :
        ((x : α) → ((y : α) → x < yC y)C x)(x : α) → C x

        Creates data, given a way to generate a value from all that compare as greater. See also WellFoundedGT.fix_eq.

        Equations
        theorem WellFoundedGT.fix_eq {α : Type u} [LT α] [WellFoundedGT α] {C : αSort u_1} (F : (x : α) → ((y : α) → x < yC y)C x) (x : α) :
        fix F x = F x fun (y : α) (x : x < y) => fix F y

        The value from WellFoundedGT.fix is built from the successive ones as specified.

        noncomputable def IsWellOrder.linearOrder {α : Type u} (r : ααProp) [IsWellOrder α r] :

        Construct a decidable linear order from a well-founded linear order.

        Equations
        def IsWellOrder.toHasWellFounded {α : Type u} [LT α] [hwo : IsWellOrder α fun (x1 x2 : α) => x1 < x2] :

        Derive a WellFoundedRelation instance from an IsWellOrder instance.

        Equations
        theorem Subsingleton.isWellOrder {α : Type u} [Subsingleton α] (r : ααProp) [hr : IsIrrefl α r] :
        @[instance 100]
        instance instIsWellOrderOfIsEmpty {α : Type u} [IsEmpty α] (r : ααProp) :
        instance Prod.Lex.instIsWellFounded {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellFounded α r] [IsWellFounded β s] :
        instance instIsWellOrderProdLex {α : Type u} {β : Type v} {r : ααProp} {s : ββProp} [IsWellOrder α r] [IsWellOrder β s] :
        instance instIsWellFoundedInvImage {α : Type u} {β : Type v} (r : ααProp) [IsWellFounded α r] (f : βα) :
        instance instIsWellFoundedInvImageNatLt {α : Type u} (f : α) :
        IsWellFounded α (InvImage (fun (x1 x2 : ) => x1 < x2) f)
        theorem Subrelation.isWellFounded {α : Type u} (r : ααProp) [IsWellFounded α r] {s : ααProp} (h : Subrelation s r) :

        See Prod.wellFoundedLT for a version that only requires Preorder α.

        See Prod.wellFoundedGT for a version that only requires Preorder α.

        def Set.Unbounded {α : Type u} (r : ααProp) (s : Set α) :

        An unbounded or cofinal set.

        Equations
        def Set.Bounded {α : Type u} (r : ααProp) (s : Set α) :

        A bounded or final set. Not to be confused with Bornology.IsBounded.

        Equations
        @[simp]
        theorem Set.not_bounded_iff {α : Type u} {r : ααProp} (s : Set α) :
        @[simp]
        theorem Set.not_unbounded_iff {α : Type u} {r : ααProp} (s : Set α) :
        theorem Set.unbounded_of_isEmpty {α : Type u} [IsEmpty α] {r : ααProp} (s : Set α) :
        instance Order.Preimage.instIsRefl {α : Type u} {β : Type v} {r : ααProp} [IsRefl α r] {f : βα} :
        instance Order.Preimage.instIsTrans {α : Type u} {β : Type v} {r : ααProp} [IsTrans α r] {f : βα} :

        Strict-non strict relations #

        class IsNonstrictStrictOrder (α : Type u_1) (r : semiOutParam (ααProp)) (s : ααProp) :

        An unbundled relation class stating that r is the nonstrict relation corresponding to the strict relation s. Compare Preorder.lt_iff_le_not_le. This is mostly meant to provide dot notation on (⊆) and (⊂).

        • right_iff_left_not_left (a b : α) : s a b r a b ¬r b a

          The relation r is the nonstrict relation corresponding to the strict relation s.

        Instances
          theorem right_iff_left_not_left {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] {a b : α} :
          theorem right_iff_left_not_left_of {α : Type u} (r s : ααProp) [IsNonstrictStrictOrder α r s] {a b : α} :

          A version of right_iff_left_not_left with explicit r and s.

          instance instIsIrreflOfIsNonstrictStrictOrder {α : Type u} {r s : ααProp} [IsNonstrictStrictOrder α r s] :

          and #

          theorem subset_of_eq_of_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
          theorem subset_of_subset_of_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
          @[simp]
          theorem subset_refl {α : Type u} [HasSubset α] [IsRefl α fun (x1 x2 : α) => x1 x2] (a : α) :
          theorem subset_rfl {α : Type u} [HasSubset α] {a : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          theorem subset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          a = ba b
          theorem superset_of_eq {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          a = bb a
          theorem ne_of_not_subset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          ¬a ba b
          theorem ne_of_not_superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          ¬a bb a
          theorem subset_trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
          a bb ca c
          theorem subset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          a bb aa = b
          theorem superset_antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          a bb ab = a
          theorem Eq.trans_subset {α : Type u} [HasSubset α] {a b c : α} (hab : a = b) (hbc : b c) :

          Alias of subset_of_eq_of_subset.

          theorem HasSubset.subset.trans_eq {α : Type u} [HasSubset α] {a b c : α} (hab : a b) (hbc : b = c) :

          Alias of subset_of_subset_of_eq.

          theorem Eq.subset' {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          a = ba b

          Alias of subset_of_eq.

          theorem Eq.superset {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] :
          a = bb a

          Alias of superset_of_eq.

          theorem HasSubset.Subset.trans {α : Type u} [HasSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
          a bb ca c

          Alias of subset_trans.

          theorem HasSubset.Subset.antisymm {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          a bb aa = b

          Alias of subset_antisymm.

          theorem HasSubset.Subset.antisymm' {α : Type u} [HasSubset α] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          a bb ab = a

          Alias of superset_antisymm.

          theorem subset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          theorem superset_antisymm_iff {α : Type u} [HasSubset α] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          theorem ssubset_of_eq_of_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :
          theorem ssubset_of_ssubset_of_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :
          theorem ssubset_irrefl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] (a : α) :
          theorem ssubset_irrfl {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :
          theorem ne_of_ssubset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
          a ba b
          theorem ne_of_ssuperset {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
          a bb a
          theorem ssubset_trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
          a bb ca c
          theorem ssubset_asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
          a b¬b a
          theorem Eq.trans_ssubset {α : Type u} [HasSSubset α] {a b c : α} (hab : a = b) (hbc : b c) :

          Alias of ssubset_of_eq_of_ssubset.

          theorem HasSSubset.SSubset.trans_eq {α : Type u} [HasSSubset α] {a b c : α} (hab : a b) (hbc : b = c) :

          Alias of ssubset_of_ssubset_of_eq.

          theorem HasSSubset.SSubset.false {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a : α} :

          Alias of ssubset_irrfl.

          theorem HasSSubset.SSubset.ne {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
          a ba b

          Alias of ne_of_ssubset.

          theorem HasSSubset.SSubset.ne' {α : Type u} [HasSSubset α] [IsIrrefl α fun (x1 x2 : α) => x1 x2] {a b : α} :
          a bb a

          Alias of ne_of_ssuperset.

          theorem HasSSubset.SSubset.trans {α : Type u} [HasSSubset α] [IsTrans α fun (x1 x2 : α) => x1 x2] {a b c : α} :
          a bb ca c

          Alias of ssubset_trans.

          theorem HasSSubset.SSubset.asymm {α : Type u} [HasSSubset α] [IsAsymm α fun (x1 x2 : α) => x1 x2] {a b : α} :
          a b¬b a

          Alias of ssubset_asymm.

          theorem ssubset_iff_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} :
          theorem subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
          theorem not_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
          theorem not_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :
          theorem ssubset_of_subset_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :
          theorem HasSSubset.SSubset.subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :

          Alias of subset_of_ssubset.

          theorem HasSSubset.SSubset.not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :

          Alias of not_subset_of_ssubset.

          theorem HasSubset.Subset.not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h : a b) :

          Alias of not_ssubset_of_subset.

          theorem HasSubset.Subset.ssubset_of_not_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} (h₁ : a b) (h₂ : ¬b a) :

          Alias of ssubset_of_subset_not_subset.

          theorem ssubset_of_subset_of_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
          theorem ssubset_of_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :
          theorem ssubset_of_subset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
          theorem ssubset_of_ne_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :
          theorem eq_or_ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
          theorem ssubset_or_eq_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :
          theorem eq_of_subset_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
          a = b
          theorem eq_of_superset_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
          b = a
          theorem HasSubset.Subset.trans_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :

          Alias of ssubset_of_subset_of_ssubset.

          theorem HasSSubset.SSubset.trans_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b c : α} [IsTrans α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : b c) :

          Alias of ssubset_of_ssubset_of_subset.

          theorem HasSubset.Subset.ssubset_of_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :

          Alias of ssubset_of_subset_of_ne.

          theorem Ne.ssubset_of_subset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h₁ : a b) (h₂ : a b) :

          Alias of ssubset_of_ne_of_subset.

          theorem HasSubset.Subset.eq_or_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :

          Alias of eq_or_ssubset_of_subset.

          theorem HasSubset.Subset.ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (h : a b) :

          Alias of ssubset_or_eq_of_subset.

          theorem HasSubset.Subset.eq_of_not_ssubset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
          a = b

          Alias of eq_of_subset_of_not_ssubset.

          theorem HasSubset.Subset.eq_of_not_ssuperset {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] (hab : a b) (hba : ¬a b) :
          b = a

          Alias of eq_of_superset_of_not_ssuperset.

          theorem ssubset_iff_subset_ne {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsAntisymm α fun (x1 x2 : α) => x1 x2] :
          theorem subset_iff_ssubset_or_eq {α : Type u} [HasSubset α] [HasSSubset α] [IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 x2] {a b : α} [IsRefl α fun (x1 x2 : α) => x1 x2] [IsAntisymm α fun (x1 x2 : α) => x1 x2] :

          Conversion of bundled order typeclasses to unbundled relation typeclasses #

          instance instIsReflLe {α : Type u} [Preorder α] :
          IsRefl α fun (x1 x2 : α) => x1 x2
          instance instIsReflGe {α : Type u} [Preorder α] :
          IsRefl α fun (x1 x2 : α) => x1 x2
          instance instIsTransLe {α : Type u} [Preorder α] :
          IsTrans α fun (x1 x2 : α) => x1 x2
          instance instIsTransGe {α : Type u} [Preorder α] :
          IsTrans α fun (x1 x2 : α) => x1 x2
          instance instIsPreorderLe {α : Type u} [Preorder α] :
          IsPreorder α fun (x1 x2 : α) => x1 x2
          instance instIsPreorderGe {α : Type u} [Preorder α] :
          IsPreorder α fun (x1 x2 : α) => x1 x2
          instance instIsIrreflLt {α : Type u} [Preorder α] :
          IsIrrefl α fun (x1 x2 : α) => x1 < x2
          instance instIsIrreflGt {α : Type u} [Preorder α] :
          IsIrrefl α fun (x1 x2 : α) => x1 > x2
          instance instIsTransLt {α : Type u} [Preorder α] :
          IsTrans α fun (x1 x2 : α) => x1 < x2
          instance instIsTransGt {α : Type u} [Preorder α] :
          IsTrans α fun (x1 x2 : α) => x1 > x2
          instance instIsAsymmLt {α : Type u} [Preorder α] :
          IsAsymm α fun (x1 x2 : α) => x1 < x2
          instance instIsAsymmGt {α : Type u} [Preorder α] :
          IsAsymm α fun (x1 x2 : α) => x1 > x2
          instance instIsAntisymmLt {α : Type u} [Preorder α] :
          IsAntisymm α fun (x1 x2 : α) => x1 < x2
          instance instIsAntisymmGt {α : Type u} [Preorder α] :
          IsAntisymm α fun (x1 x2 : α) => x1 > x2
          instance instIsStrictOrderLt {α : Type u} [Preorder α] :
          IsStrictOrder α fun (x1 x2 : α) => x1 < x2
          instance instIsStrictOrderGt {α : Type u} [Preorder α] :
          IsStrictOrder α fun (x1 x2 : α) => x1 > x2
          instance instIsNonstrictStrictOrderLeLt {α : Type u} [Preorder α] :
          IsNonstrictStrictOrder α (fun (x1 x2 : α) => x1 x2) fun (x1 x2 : α) => x1 < x2
          instance instIsAntisymmLe {α : Type u} [PartialOrder α] :
          IsAntisymm α fun (x1 x2 : α) => x1 x2
          instance instIsAntisymmGe {α : Type u} [PartialOrder α] :
          IsAntisymm α fun (x1 x2 : α) => x1 x2
          instance instIsPartialOrderLe {α : Type u} [PartialOrder α] :
          IsPartialOrder α fun (x1 x2 : α) => x1 x2
          instance instIsPartialOrderGe {α : Type u} [PartialOrder α] :
          IsPartialOrder α fun (x1 x2 : α) => x1 x2
          instance LE.isTotal {α : Type u} [LinearOrder α] :
          IsTotal α fun (x1 x2 : α) => x1 x2
          instance instIsTotalGe {α : Type u} [LinearOrder α] :
          IsTotal α fun (x1 x2 : α) => x1 x2
          instance instIsLinearOrderLe {α : Type u} [LinearOrder α] :
          IsLinearOrder α fun (x1 x2 : α) => x1 x2
          instance instIsLinearOrderGe {α : Type u} [LinearOrder α] :
          IsLinearOrder α fun (x1 x2 : α) => x1 x2
          instance instIsTrichotomousLt {α : Type u} [LinearOrder α] :
          IsTrichotomous α fun (x1 x2 : α) => x1 < x2
          instance instIsTrichotomousGt {α : Type u} [LinearOrder α] :
          IsTrichotomous α fun (x1 x2 : α) => x1 > x2
          instance instIsTrichotomousLe {α : Type u} [LinearOrder α] :
          IsTrichotomous α fun (x1 x2 : α) => x1 x2
          instance instIsTrichotomousGe {α : Type u} [LinearOrder α] :
          IsTrichotomous α fun (x1 x2 : α) => x1 x2
          instance instIsStrictTotalOrderLt {α : Type u} [LinearOrder α] :
          IsStrictTotalOrder α fun (x1 x2 : α) => x1 < x2
          instance instIsOrderConnectedLt {α : Type u} [LinearOrder α] :
          IsOrderConnected α fun (x1 x2 : α) => x1 < x2
          instance OrderDual.isTotal_le {α : Type u} [LE α] [h : IsTotal α fun (x1 x2 : α) => x1 x2] :
          IsTotal αᵒᵈ fun (x1 x2 : αᵒᵈ) => x1 x2
          @[instance 100]
          instance isWellOrder_lt {α : Type u} [LinearOrder α] [WellFoundedLT α] :
          IsWellOrder α fun (x1 x2 : α) => x1 < x2
          @[instance 100]
          instance isWellOrder_gt {α : Type u} [LinearOrder α] [WellFoundedGT α] :
          IsWellOrder α fun (x1 x2 : α) => x1 > x2