Documentation

Mathlib.Probability.Kernel.Composition.MeasureComp

Lemmas about the composition of a measure and a kernel #

Basic lemmas about the composition κ ∘ₘ μ of a kernel κ and a measure μ.

theorem MeasureTheory.Measure.comp_assoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {μ : Measure α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel β γ} :
(μ.bind κ).bind η = μ.bind (η.comp κ)
@[simp]
theorem MeasureTheory.Measure.snd_compProd {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (μ : Measure α) [SFinite μ] (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsSFiniteKernel κ] :
(μ.compProd κ).snd = μ.bind κ
theorem MeasureTheory.Measure.map_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} (μ : Measure α) (κ : ProbabilityTheory.Kernel α β) {f : βγ} (hf : Measurable f) :
map f (μ.bind κ) = μ.bind (κ.map f)
@[simp]
theorem MeasureTheory.Measure.comp_add {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ ν : Measure α} {κ : ProbabilityTheory.Kernel α β} [SFinite μ] [SFinite ν] [ProbabilityTheory.IsSFiniteKernel κ] :
(μ + ν).bind κ = μ.bind κ + ν.bind κ
@[simp]

Same as add_comp except that it uses ⇑κ + ⇑η instead of ⇑(κ + η) in order to have a simp-normal form on the left of the equality.

theorem MeasureTheory.Measure.comp_smul {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : Measure α} {κ : ProbabilityTheory.Kernel α β} (a : ENNReal) :
(a μ).bind κ = a μ.bind κ
theorem MeasureTheory.Measure.AbsolutelyContinuous.comp {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ ν : Measure α} {κ η : ProbabilityTheory.Kernel α β} [SFinite μ] [SFinite ν] [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] (hμν : μ.AbsolutelyContinuous ν) (hκη : ∀ᵐ (a : α) μ, (κ a).AbsolutelyContinuous (η a)) :
(μ.bind κ).AbsolutelyContinuous (ν.bind η)