Algebra instance on adic completion #
In this file we provide an algebra instance on the adic completion of a ring. Then the adic completion of any module is a module over the adic completion of the ring.
Implementation details #
We do not make a separate adic completion type in algebra case, to not duplicate all module
theoretic results on adic completions. This choice does cause some trouble though,
since I ^ n • ⊤
is not defeq to I ^ n
. We try to work around most of the trouble by
providing as much API as possible.
AdicCompletion.transitionMap
as an algebra homomorphism.
Equations
Instances For
AdicCompletion I R
is an R
-subalgebra of ∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)
.
Instances For
AdicCompletion I R
is a subring of ∀ n, R ⧸ (I ^ n • ⊤ : Ideal R)
.
Instances For
Equations
- AdicCompletion.instMul I = { mul := fun (x y : AdicCompletion I R) => ⟨↑x * ↑y, ⋯⟩ }
Equations
Equations
Equations
- AdicCompletion.instPowNat I = { pow := fun (x : AdicCompletion I R) (n : ℕ) => ⟨↑x ^ n, ⋯⟩ }
Equations
- AdicCompletion.instAlgebra I = Algebra.mk { toFun := fun (r : S) => ⟨(algebraMap S ((n : ℕ) → R ⧸ I ^ n • ⊤)) r, ⋯⟩, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ } ⋯ ⋯
The canonical algebra map from the adic completion to R ⧸ I ^ n
.
This is AdicCompletion.eval
postcomposed with the algebra isomorphism
R ⧸ (I ^ n • ⊤) ≃ₐ[R] R ⧸ I ^ n
.
Equations
Instances For
AdicCauchySequence I R
is an R
-subalgebra of ℕ → R
.
Equations
Instances For
AdicCauchySequence I R
is a subring of ℕ → R
.
Equations
Instances For
Equations
- AdicCompletion.instAlgebraAdicCauchySequence I = Algebra.mk { toFun := fun (r : R) => ⟨(algebraMap R (ℕ → R)) r, ⋯⟩, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ } ⋯ ⋯
The canonical algebra map from adic cauchy sequences to the adic completion.
Instances For
Scalar multiplication of R ⧸ (I • ⊤)
on M ⧸ (I • ⊤)
. This is used in order to have
good definitional behaviour for the module instance on adic completions
Equations
- AdicCompletion.smul I = { smul := fun (r : AdicCompletion I R) (x : AdicCompletion I M) => ⟨fun (n : ℕ) => (AdicCompletion.eval I R n) r • (AdicCompletion.eval I M n) x, ⋯⟩ }
AdicCompletion I M
is naturally an AdicCompletion I R
module.