Documentation

Mathlib.RingTheory.HopfAlgebra

Hopf algebras #

In this file we define HopfAlgebra, and provide instances for:

Main definitions #

TODO #

(Note that all three facts have been proved for Hopf bimonoids in an arbitrary braided category, so we could deduce the facts here from an equivalence HopfAlgebraCat R ≌ Hopf_ (ModuleCat R).)

References #

A Hopf algebra over a commutative (semi)ring R is a bialgebra over R equipped with an R-linear endomorphism antipode satisfying the antipode axioms.

    Instances
      theorem HopfAlgebra.mul_antipode_rTensor_comul {R : Type u} {A : Type v} :
      ∀ {inst : CommSemiring R} {inst_1 : Semiring A} [self : HopfAlgebra R A], LinearMap.mul' R A ∘ₗ LinearMap.rTensor A HopfAlgebra.antipode ∘ₗ Coalgebra.comul = Algebra.linearMap R A ∘ₗ Coalgebra.counit

      One of the antipode axioms for a Hopf algebra.

      theorem HopfAlgebra.mul_antipode_lTensor_comul {R : Type u} {A : Type v} :
      ∀ {inst : CommSemiring R} {inst_1 : Semiring A} [self : HopfAlgebra R A], LinearMap.mul' R A ∘ₗ LinearMap.lTensor A HopfAlgebra.antipode ∘ₗ Coalgebra.comul = Algebra.linearMap R A ∘ₗ Coalgebra.counit

      One of the antipode axioms for a Hopf algebra.

      @[simp]
      theorem HopfAlgebra.mul_antipode_rTensor_comul_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : A) :
      (LinearMap.mul' R A) ((LinearMap.rTensor A HopfAlgebra.antipode) (Coalgebra.comul a)) = (algebraMap R A) (Coalgebra.counit a)
      @[simp]
      theorem HopfAlgebra.mul_antipode_lTensor_comul_apply {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : A) :
      (LinearMap.mul' R A) ((LinearMap.lTensor A HopfAlgebra.antipode) (Coalgebra.comul a)) = (algebraMap R A) (Coalgebra.counit a)
      @[simp]
      theorem HopfAlgebra.sum_antipode_mul_eq {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
      irepr.index, HopfAlgebra.antipode (repr.left i) * repr.right i = (algebraMap R A) (Coalgebra.counit a)
      @[simp]
      theorem HopfAlgebra.sum_mul_antipode_eq {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
      irepr.index, repr.left i * HopfAlgebra.antipode (repr.right i) = (algebraMap R A) (Coalgebra.counit a)
      theorem HopfAlgebra.sum_antipode_mul_eq_smul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
      irepr.index, HopfAlgebra.antipode (repr.left i) * repr.right i = Coalgebra.counit a 1
      theorem HopfAlgebra.sum_mul_antipode_eq_smul {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (repr : Coalgebra.Repr R a) :
      irepr.index, repr.left i * HopfAlgebra.antipode (repr.right i) = Coalgebra.counit a 1
      noncomputable instance CommSemiring.toHopfAlgebra (R : Type u) [CommSemiring R] :

      Every commutative (semi)ring is a Hopf algebra over itself

      Equations
      @[simp]
      theorem CommSemiring.antipode_eq_id (R : Type u) [CommSemiring R] :
      HopfAlgebra.antipode = LinearMap.id