Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Basic

Residue Field of local rings #

We prove basic properties of the residue field of a local ring.

@[simp]
instance IsLocalRing.instIsScalarTowerResidueField (R : Type u_1) [CommRing R] [IsLocalRing R] {R₁ : Type u_4} {R₂ : Type u_5} [CommRing R₁] [CommRing R₂] [Algebra R₁ R₂] [Algebra R₁ R] [Algebra R₂ R] [IsScalarTower R₁ R₂ R] :

A local ring homomorphism into a field can be descended onto the residue field.

Equations
@[simp]
theorem IsLocalRing.ResidueField.lift_residue_apply {R : Type u_4} {S : Type u_5} [CommRing R] [IsLocalRing R] [Field S] (f : R →+* S) [IsLocalHom f] (x : R) :
(lift f) ((residue R) x) = f x

The map on residue fields induced by a local homomorphism between local rings

Equations
@[simp]

Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity ring homomorphism.

theorem IsLocalRing.ResidueField.map_comp {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (f : T →+* R) (g : R →+* S) [IsLocalHom f] [IsLocalHom g] :
map (g.comp f) = (map g).comp (map f)

The composite of two IsLocalRing.ResidueField.maps is the IsLocalRing.ResidueField.map of the composite.

theorem IsLocalRing.ResidueField.map_residue {R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R →+* S) [IsLocalHom f] (r : R) :
(map f) ((residue R) r) = (residue S) (f r)
@[simp]
theorem IsLocalRing.ResidueField.map_map {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (f : R →+* S) (g : S →+* T) (x : ResidueField R) [IsLocalHom f] [IsLocalHom g] :
(map g) ((map f) x) = (map (g.comp f)) x

A ring isomorphism defines an isomorphism of residue fields.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem IsLocalRing.ResidueField.mapEquiv_apply {R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R ≃+* S) (a : ResidueField R) :
(mapEquiv f) a = (map f) a
@[simp]
theorem IsLocalRing.ResidueField.mapEquiv_trans {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (e₁ : R ≃+* S) (e₂ : S ≃+* T) :
mapEquiv (e₁.trans e₂) = (mapEquiv e₁).trans (mapEquiv e₂)

The group homomorphism from RingAut R to RingAut k where k is the residue field of R.

Equations
@[simp]
theorem IsLocalRing.ResidueField.residue_smul {R : Type u_1} [CommRing R] [IsLocalRing R] (G : Type u_4) [Group G] [MulSemiringAction G R] (g : G) (r : R) :
@[deprecated IsLocalRing.isLocalHom_residue (since := "2024-10-10")]

Alias of IsLocalRing.isLocalHom_residue.

@[deprecated IsLocalRing.ker_residue (since := "2024-11-11")]

Alias of IsLocalRing.ker_residue.

@[deprecated IsLocalRing.residue_eq_zero_iff (since := "2024-11-11")]

Alias of IsLocalRing.residue_eq_zero_iff.

@[deprecated IsLocalRing.residue_ne_zero_iff_isUnit (since := "2024-11-11")]

Alias of IsLocalRing.residue_ne_zero_iff_isUnit.

@[deprecated IsLocalRing.residue_surjective (since := "2024-11-11")]

Alias of IsLocalRing.residue_surjective.

@[deprecated IsLocalRing.ResidueField.algebraMap_eq (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.algebraMap_eq.

@[deprecated IsLocalRing.ResidueField.lift (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.lift.


A local ring homomorphism into a field can be descended onto the residue field.

Equations
@[deprecated IsLocalRing.ResidueField.lift_comp_residue (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.lift_comp_residue.

@[deprecated IsLocalRing.ResidueField.lift_residue_apply (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.lift_residue_apply.

@[deprecated IsLocalRing.ResidueField.map (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map.


The map on residue fields induced by a local homomorphism between local rings

Equations
@[deprecated IsLocalRing.ResidueField.map_id (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map_id.


Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity ring homomorphism.

@[deprecated IsLocalRing.ResidueField.map_comp (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map_comp.


The composite of two IsLocalRing.ResidueField.maps is the IsLocalRing.ResidueField.map of the composite.

@[deprecated IsLocalRing.ResidueField.map_comp_residue (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map_comp_residue.

@[deprecated IsLocalRing.ResidueField.map_residue (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map_residue.

@[deprecated IsLocalRing.ResidueField.map_id_apply (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map_id_apply.

@[deprecated IsLocalRing.ResidueField.map_map (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.map_map.

@[deprecated IsLocalRing.ResidueField.mapEquiv (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.mapEquiv.


A ring isomorphism defines an isomorphism of residue fields.

Equations
@[deprecated IsLocalRing.ResidueField.mapEquiv.symm (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.mapEquiv.symm.

@[deprecated IsLocalRing.ResidueField.mapEquiv_trans (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.mapEquiv_trans.

@[deprecated IsLocalRing.ResidueField.mapEquiv_refl (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.mapEquiv_refl.

@[deprecated IsLocalRing.ResidueField.mapAut (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.mapAut.


The group homomorphism from RingAut R to RingAut k where k is the residue field of R.

Equations
@[deprecated IsLocalRing.ResidueField.residue_smul (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.residue_smul.

@[deprecated IsLocalRing.ResidueField.finite_of_finite (since := "2024-11-11")]

Alias of IsLocalRing.ResidueField.finite_of_finite.