Documentation

Mathlib.RingTheory.Localization.BaseChange

Localized Module #

Given a commutative semiring R, a multiplicative subset S ⊆ R and an R-module M, we can localize M by S. This gives us a Localization S-module.

Main definition #

theorem IsLocalizedModule.isBaseChange {R : Type u_1} [CommSemiring R] (S : Submonoid R) (A : Type u_2) [CommRing A] [Algebra R A] [IsLocalization S A] {M : Type u_3} [AddCommMonoid M] [Module R M] {M' : Type u_4} [AddCommMonoid M'] [Module R M'] [Module A M'] [IsScalarTower R A M'] (f : M →ₗ[R] M') [IsLocalizedModule S f] :

The forward direction of isLocalizedModule_iff_isBaseChange. It is also used to prove the other direction.

theorem isLocalizedModule_iff_isBaseChange {R : Type u_1} [CommSemiring R] (S : Submonoid R) (A : Type u_2) [CommRing A] [Algebra R A] [IsLocalization S A] {M : Type u_3} [AddCommMonoid M] [Module R M] {M' : Type u_4} [AddCommMonoid M'] [Module R M'] [Module A M'] [IsScalarTower R A M'] (f : M →ₗ[R] M') :

The map (f : M →ₗ[R] M') is a localization of modules iff the map (Localization S) × M → N, (s, m) ↦ s • f m is the tensor product (insomuch as it is the universal bilinear map). In particular, there is an isomorphism between LocalizedModule S M and (Localization S) ⊗[R] M given by m/s ↦ (1/s) ⊗ₜ m.

theorem Algebra.isPushout_of_isLocalization {R : Type u_1} [CommSemiring R] (S : Submonoid R) (A : Type u_2) [CommRing A] [Algebra R A] [IsLocalization S A] (T : Type u_5) (B : Type u_6) [CommSemiring T] [CommSemiring B] [Algebra R T] [Algebra T B] [Algebra R B] [Algebra A B] [IsScalarTower R T B] [IsScalarTower R A B] [IsLocalization (Algebra.algebraMapSubmonoid T S) B] :
instance instIsLocalizedModuleFinsuppLinearMap (R : Type u_7) (M : Type u_8) [CommRing R] [AddCommGroup M] [Module R M] {α : Type u_9} (S : Submonoid R) {Mₛ : Type u_10} [AddCommGroup Mₛ] [Module R Mₛ] (f : M →ₗ[R] Mₛ) [IsLocalizedModule S f] :
Equations
  • =